Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article in English | MEDLINE | ID: mdl-35046034

ABSTRACT

Nitric oxide (NO) signaling in biology relies on its activating cyclic guanosine monophosphate (cGMP) production by the NO receptor soluble guanylyl cyclase (sGC). sGC must obtain heme and form a heterodimer to become functional, but paradoxically often exists as an immature heme-free form in cells and tissues. Based on our previous finding that NO can drive sGC maturation, we investigated its basis by utilizing a fluorescent sGC construct whose heme level can be monitored in living cells. We found that NO generated at physiologic levels quickly triggered cells to mobilize heme to immature sGC. This occurred when NO was generated within cells or by neighboring cells, began within seconds of NO exposure, and led cells to construct sGC heterodimers and thus increase their active sGC level by several-fold. The NO-triggered heme deployment involved cellular glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-heme complexes and required the chaperone hsp90, and the newly formed sGC heterodimers remained functional long after NO generation had ceased. We conclude that NO at physiologic levels triggers assembly of its own receptor by causing a rapid deployment of cellular heme. Redirecting cellular heme in response to NO is a way for cells and tissues to modulate their cGMP signaling and to more generally tune their hemeprotein activities wherever NO biosynthesis takes place.


Subject(s)
Heme/metabolism , Nitric Oxide/metabolism , Receptors, Cell Surface/metabolism , Animals , Calcium , Cyclic GMP , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Guanylate Cyclase/metabolism , HSP90 Heat-Shock Proteins/metabolism , Humans , Mice , Models, Biological , Protein Binding , Protein Multimerization , Protein Transport , Signal Transduction , Soluble Guanylyl Cyclase/metabolism
2.
Biochim Biophys Acta Biomembr ; 1864(3): 183836, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34906602

ABSTRACT

There have recently been advances in methods for detecting local secondary structures of membrane protein using electron paramagnetic resonance (EPR). A three pulsed electron spin echo envelope modulation (ESEEM) approach was used to determine the local helical secondary structure of the small hole forming membrane protein, S21 pinholin. This ESEEM approach uses a combination of site-directed spin labeling and 2H-labeled side chains. Pinholin S21 is responsible for the permeabilization of the inner cytosolic membrane of double stranded DNA bacteriophage host cells. In this study, we report on the overall global helical structure using circular dichroism (CD) spectroscopy for the active form and the negative-dominant inactive mutant form of S21 pinholin. The local helical secondary structure was confirmed for both transmembrane domains (TMDs) for the active and inactive S21 pinholin using the ESEEM spectroscopic technique. Comparison of the ESEEM normalized frequency domain intensity for each transmembrane domain gives an insight into the α-helical folding nature of these domains as opposed to a π or 310-helix which have been observed in other channel forming proteins.


Subject(s)
Bacteriophages/metabolism , Electron Spin Resonance Spectroscopy/methods , Lipid Bilayers/chemistry , Membrane Proteins/chemistry , Viral Proteins/chemistry , Amino Acid Sequence , Protein Structure, Secondary
3.
Biochim Biophys Acta Biomembr ; 1863(12): 183771, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34499883

ABSTRACT

The bacteriophage infection cycle is terminated at a predefined time to release the progeny virions via a robust lytic system composed of holin, endolysin, and spanin proteins. Holin is the timekeeper of this process. Pinholin S21 is a prototype holin of phage Φ21, which determines the timing of host cell lysis through the coordinated efforts of pinholin and antipinholin. However, mutations in pinholin and antipinholin play a significant role in modulating the timing of lysis depending on adverse or favorable growth conditions. Earlier studies have shown that single point mutations of pinholin S21 alter the cell lysis timing, a proxy for pinholin function as lysis is also dependent on other lytic proteins. In this study, continuous wave electron paramagnetic resonance (CW-EPR) power saturation and double electron-electron resonance (DEER) spectroscopic techniques were used to directly probe the effects of mutations on the structure and conformational changes of pinholin S21 that correlate with pinholin function. DEER and CW-EPR power saturation data clearly demonstrate that increased hydrophilicity induced by residue mutations accelerate the externalization of antipinholin transmembrane domain 1 (TMD1), while increased hydrophobicity prevents the externalization of TMD1. This altered hydrophobicity is potentially accelerating or delaying the activation of pinholin S21. It was also found that mutations can influence intra- or intermolecular interactions in this system, which contribute to the activation of pinholin and modulate the cell lysis timing. This could be a novel approach to analyze the mutational effects on other holin systems, as well as any other membrane protein in which mutation directly leads to structural and conformational changes.


Subject(s)
Bacteriophages/genetics , Endopeptidases/genetics , Membrane Proteins/genetics , Viral Proteins/genetics , Virion/genetics , Bacteriophages/chemistry , Biological Transport , Cell Death/genetics , Endopeptidases/chemistry , Membrane Proteins/chemistry , Mutation/genetics , Viral Proteins/chemistry , Virion/chemistry
4.
J Phys Chem B ; 124(26): 5370-5379, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32501696

ABSTRACT

The bacteriophage infection cycle plays a crucial role in recycling the world's biomass. Bacteriophages devise various cell lysis systems to strictly control the length of the infection cycle for an efficient phage life cycle. Phages evolved with lysis protein systems, which can control and fine-tune the length of this infection cycle depending on the host and growing environment. Among these lysis proteins, holin controls the first and rate-limiting step of host cell lysis by permeabilizing the inner membrane at an allele-specific time and concentration hence known as the simplest molecular clock. Pinholin S21 is the holin from phage Φ21, which defines the cell lysis time through a predefined ratio of active pinholin and antipinholin (inactive form of pinholin). Active pinholin and antipinholin fine-tune the lysis timing through structural dynamics and conformational changes. Previously we reported the structural dynamics and topology of active pinholin S2168. Currently, there is no detailed structural study of the antipinholin using biophysical techniques. In this study, the structural dynamics and topology of antipinholin S2168IRS in DMPC proteoliposomes is investigated using electron paramagnetic resonance (EPR) spectroscopic techniques. Continuous-wave (CW) EPR line shape analysis experiments of 35 different R1 side chains of S2168IRS indicated restricted mobility of the transmembrane domains (TMDs), which were predicted to be inside the lipid bilayer when compared to the N- and C-termini R1 side chains. In addition, the R1 accessibility test performed on 24 residues using the CW-EPR power saturation experiment indicated that TMD1 and TMD2 of S2168IRS were incorporated into the lipid bilayer where N- and C-termini were located outside of the lipid bilayer. Based on this study, a tentative model of S2168IRS is proposed where both TMDs remain incorporated into the lipid bilayer and N- and C-termini are located outside of the lipid bilayer. This work will pave the way for the further studies of other holins using biophysical techniques and will give structural insights into these biological clocks in molecular detail.


Subject(s)
Bacteriophages , Lipid Bilayers , Bacteriophages/genetics , Electron Spin Resonance Spectroscopy , Viral Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...