Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
1.
J Gen Virol ; 92(Pt 4): 974-87, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21169213

ABSTRACT

Cassava brown streak disease (CBSD) has occurred in the Indian Ocean coastal lowlands and some areas of Malawi in East Africa for decades, and makes the storage roots of cassava unsuitable for consumption. CBSD is associated with Cassava brown streak virus (CBSV) and the recently described Ugandan cassava brown streak virus (UCBSV) [picorna-like (+)ssRNA viruses; genus Ipomovirus; family Potyviridae]. This study reports the first comprehensive analysis on how evolution is shaping the populations of CBSV and UCBSV. The complete genomes of CBSV and UCBSV (four and eight isolates, respectively) were 69.0-70.3 and 73.6-74.4% identical at the nucleotide and polyprotein amino acid sequence levels, respectively. They contained predictable sites of homologous recombination, mostly in the 3'-proximal part (NIb-HAM1h-CP-3'-UTR) of the genome, but no evidence of recombination between the two viruses was found. The CP-encoding sequences of 22 and 45 isolates of CBSV and UCBSV analysed, respectively, were mainly under purifying selection; however, several sites in the central part of CBSV CP were subjected to positive selection. HAM1h (putative nucleoside triphosphate pyrophosphatase) was the least similar protein between CBSV and UCBSV (aa identity approx. 55%). Both termini of HAM1h contained sites under positive selection in UCBSV. The data imply an on-going but somewhat different evolution of CBSV and UCBSV, which is congruent with the recent widespread outbreak of UCBSV in cassava crops in the highland areas (>1000 m above sea level) of East Africa where CBSD has not caused significant problems in the past.


Subject(s)
Evolution, Molecular , Manihot/virology , Phylogeny , Plant Diseases/virology , Potyviridae/classification , Potyviridae/isolation & purification , Africa , Cluster Analysis , Genome, Viral , India , Molecular Sequence Data , Potyviridae/genetics , RNA, Viral/genetics , Recombination, Genetic , Selection, Genetic , Sequence Analysis, DNA , Sequence Homology
2.
J Gen Virol ; 89(Pt 3): 818-828, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18272774

ABSTRACT

Isolates of two distinct begomovirus species, the severe strain of the species Tomato leaf curl New Delhi virus (tomato leaf curl New Delhi virus-[India:New Delhi:Severe:1992]; ToLCNDV-[IN:ND:Svr:92], bipartite) and the Varanasi strain of the species Tomato leaf curl Gujarat virus (tomato leaf curl Gujarat virus-[India:Varanasi:2001]; ToLCGV-[IN:Var:01], mono/bipartite) infect tomato (Lycopersicon esculentum) and cause severe yield losses in northern India. This study investigated the infectivity properties of genomic components of these two species. Both pseudorecombinants were infectious in Nicotiana benthamiana, Nicotiana tabacum and L. esculentum. Enhanced pathogenicity was observed when DNA-A of ToLCNDV-[IN:ND:Svr:92] was trans-complemented with ToLCGV-[IN:Var:01] DNA-B, and was consistently associated with an increase in accumulation of ToLCGV-[IN:Var:01] DNA-B. Mixed infection of ToLCNDV-[IN:ND:Svr:92] and ToLCGV-[IN:Var:01] always showed extremely severe symptoms, suggesting a synergistic interaction between these two viruses. Southern blot analysis of viral DNAs from infected plants showed a significantly higher level of accumulation of both ToLCNDV components and DNA-B of ToLCGV-[IN:Var:01] with no alteration to levels of DNA-A of ToLCGV-[IN:Var:01]. Symptom development and/or higher infectivity of the supervirulent pseudorecombinants correlated with the increased levels of DNA-B accumulation. Protoplast replication assays revealed that enhanced infectivity by the pseudorecombinant occurred at the level of replication, as DNA-A of ToLCNDV-[IN:ND:Svr:92] enhanced ToLCGV-[IN:Var:01] DNA-B replication, whose accumulation was in turn increased by ToLCGV-[IN:Var:01] DNA-A. This is the first report demonstrating a virulent pseudorecombinant between two distinct species of begomoviruses that infect tomato, and is the second report on synergism between begomoviruses. The results revealed that ToLCGV-[IN:Var:01] DNA-B is capable of associating with different DNA-A components, despite having different iteron sequences.


Subject(s)
Begomovirus/classification , Begomovirus/pathogenicity , Genome, Viral , Plant Diseases/virology , Recombination, Genetic , Solanum lycopersicum/virology , Base Sequence , Begomovirus/genetics , DNA, Viral/genetics , DNA, Viral/metabolism , India , Molecular Sequence Data , Protoplasts/virology , Species Specificity , Nicotiana/virology , Virulence , Virus Replication
3.
Arch Virol ; 153(4): 783-821, 2008.
Article in English | MEDLINE | ID: mdl-18256781

ABSTRACT

Geminivirus taxonomy and nomenclature is growing in complexity with the number of genomic sequences deposited in sequence databases. Taxonomic and nomenclatural updates are published at regular intervals (Fauquet et al. in Arch Virol 145:1743-1761, 2000, Arch Virol 148:405-421, 2003). A system to standardize virus names, and corresponding guidelines, has been proposed (Fauquet et al. in Arch Virol 145:1743-1761, 2000). This system is now followed by a large number of geminivirologists in the world, making geminivirus nomenclature more transparent and useful. In 2003, due to difficulties inherent in species identification, the ICTV Geminiviridae Study Group proposed new species demarcation criteria, the most important of which being an 89% nucleotide (nt) identity threshold between full-length DNA-A component nucleotide sequences for begomovirus species. This threshold has been utilised since with general satisfaction. More recently, an article has been published to clarify the terminology used to describe virus entities below the species level [5]. The present publication is proposing demarcation criteria and guidelines to classify and name geminiviruses below the species level. Using the Clustal V algorithm (DNAStar MegAlign software), the distribution of pairwise sequence comparisons, for pairs of sequences below the species taxonomic level, identified two peaks: one at 85-94% nt identity that is proposed to correspond to "strain" comparisons and one at 92-100% identity that corresponds to "variant" comparisons. Guidelines for descriptors for each of these levels are proposed to standardize nomenclature under the species level. In this publication we review the status of geminivirus species and strain demarcation as well as providing updated isolate descriptors for a total of 672 begomovirus isolates. As a consequence, we have revised the status of some virus isolates to classify them as "strains", whereas several others previously classified as "strains" have been upgraded to "species". In all other respects, the classification system has remained robust, and we therefore propose to continue using it. An updated list of all geminivirus isolates and a phylogenetic tree with one representative isolate per species are provided.


Subject(s)
Classification/methods , Geminiviridae/classification , Terminology as Topic , Geminiviridae/genetics , Phylogeny , Plant Diseases/virology , Plant Viruses/classification , Plant Viruses/genetics , Species Specificity
4.
Arch Virol ; 153(4): 763-81, 2008.
Article in English | MEDLINE | ID: mdl-18247103

ABSTRACT

The symptom-modulating, single-stranded DNA satellites (known as DNA-beta) associated with begomoviruses (family Geminiviridae) have proven to be widespread and important components of a large number of plant diseases across the Old World. Since they were first identified in 2000, over 260 full-length sequences (approximately 1,360 nucleotides) have been deposited with databases, and this number increases daily. This has highlighted the need for a standardised, concise and unambiguous nomenclature for these components, as well as a meaningful and robust classification system. Pairwise comparisons of all available full-length DNA-beta sequences indicate that the minimum numbers of pairs occur at a sequence identity of 78%, which we propose as the species demarcation threshold for a distinct DNA-beta. This threshold value divides the presently known DNA-beta sequences into 51 distinct satellite species. In addition, we propose a naming convention for the satellites that is based upon the system already in use for geminiviruses. This maintains, whenever possible, the association with the helper begomovirus, the disease symptoms and the host plant and provides a logical and consistent system for referring to already recognised and newly identified satellites.


Subject(s)
Begomovirus/genetics , DNA, Viral/classification , Geminiviridae/genetics , Begomovirus/classification , Classification/methods , DNA, Viral/genetics , Geminiviridae/classification , Plant Diseases/virology , Plant Viruses/classification , Plant Viruses/genetics , Species Specificity , Terminology as Topic
5.
Arch Virol ; 153(3): 533-9, 2008.
Article in English | MEDLINE | ID: mdl-18175042

ABSTRACT

The full-length genome of a begomovirus and its cognate DNA-beta satellite component associated with chilli leaf curl disease (ChLCD), originating from Varanasi, India, were cloned. Sequence analysis revealed that the viral genome (EF190217) is 2,750 bp and the DNA-beta satellite (EF190215) is 1,361 bp in length. Agroinoculation with partial tandem repeats of the viral genome along with the satellite induced symptoms typical of ChLCD in chilli and Nicotiana benthamiana. However, symptom expression was delayed and milder when the viral genome was agroinoculated alone in these hosts. Sequence comparisons revealed that the genome had the highest sequence identity (95%) with that of chilli leaf curl virus-PK[PK:Mul:98]. The DNA-beta satellite shared maximum sequence identity (88%) with a DNA-beta satellite associated with tomato leaf curl disease from Rajasthan (ToLCBDB-[IN:Raj:03]). These results demonstrate that ChLCD is caused by a complex consisting of the monopartite chilli leaf curl virus and a DNA-beta satellite component. This is the first experimental demonstration of Koch's postulates using cloned DNA molecules associated with chilli leaf curl disease.


Subject(s)
Begomovirus/genetics , Begomovirus/physiology , Capsicum/virology , DNA, Viral/genetics , Genome, Viral , Plant Diseases/virology , Base Sequence , Begomovirus/classification , Begomovirus/isolation & purification , Cloning, Molecular , India , Molecular Sequence Data , Phylogeny , Sequence Alignment
6.
Arch Virol ; 151(11): 2111-22, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16773235

ABSTRACT

The disease caused by rice yellow mottle virus (RYMV) is a major, economically important constraint to rice production in Africa. RYMV is mechanically transmitted by a variety of agents, including insect vectors. The production of resistant rice varieties would be an important advance in the control of the disease and increase rice production in Africa. We produced transgenic plants of the Oryza sativa japonica variety, TP309, to express a RYMV coat protein gene (CP) and mutants of the CP under the control of a ubiquitin promoter. Transgenic plants expressing genes that encode wild-type CP (wt.CP), deleted CP (DeltaNLS.CP), mRNA of the CP, or antisense CP sequences of the CP gene were characterised. Eighty per cent (80%) of independent transgenic lines analysed contained CP gene sequences. Transgenic plants were challenged with RYMV and produced two types of reactions. Most of the plants expressing antisense sequences of the CP and untranslatable CP mRNA exhibited a delay in virus accumulation of up to a week, and the level of virus accumulation was reduced compared with non-transgenic TP309 plants. Transgenic plants expressing RYMV wild-type CP (wt.CP) and deleted CP (DeltaNLS.CP) accumulated the highest levels of virus particles. These results suggest that antisense CP and untranslatable CP mRNA induced moderate resistance, whereas transgenic CP enhanced virus infection.


Subject(s)
Capsid Proteins/metabolism , Oryza/virology , Plant Diseases/virology , RNA Viruses/pathogenicity , Capsid Proteins/genetics , Gene Deletion , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/virology , RNA Viruses/genetics , RNA Viruses/metabolism , RNA, Antisense/genetics , RNA, Antisense/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism
7.
Arch Virol ; 150(10): 2151-79, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16132185

ABSTRACT

Geminivirus taxonomy and nomenclature is increasing in complexity with time, and the growing number of geminivirus sequences deposited in gene banks requires regular taxonomic updates and calls for new descriptors to identify virus isolates unambiguously. Fauquet et al. [1] proposed a system to standardize the names of the viruses, and corresponding guidelines have been followed since, rendering nomenclature much easier. Recently, due to difficulties inherent in species identification, the ICTV Geminiviridae Study Group proposed new species demarcation criteria, the most important of which being an 89% identity threshold between complete DNA-A component nucleotide sequences of begomoviruses. This threshold has been utilised since with general satisfaction. In this paper, we review the status of geminivirus species demarcation and nomenclature for a total of 389 isolates. A small number of corrections have been made to comply with the adopted demarcation criteria but otherwise the classification system has remained robust and therefore we propose to continue using it. However, the large numbers of geminivirus sequences that have become available have led us to recognize the need for a better description of virus isolates. The pairwise comparison distribution below the taxonomic level of species identified two peaks, one at 90-91% identity that may correspond to "strains" and one at 96-98% identity that may correspond to "variants". Guidelines for descriptors for each of these levels are proposed to standardize nomenclature. As a consequence, we have revisited the status of some virus isolates to elevate them to "strains". An updated list of all geminivirus isolates currently available is provided.


Subject(s)
Geminiviridae/classification , DNA, Viral/genetics , Geminiviridae/genetics , Geminiviridae/isolation & purification , Phylogeny , Plants/virology , Species Specificity , Terminology as Topic
8.
Virol J ; 2: 64, 2005 Aug 16.
Article in English | MEDLINE | ID: mdl-16105179

ABSTRACT

In 2005, ICTV (International Committee on Taxonomy of Viruses), the official body of the Virology Division of the International Union of Microbiological Societies responsible for naming and classifying viruses, will publish its latest report, the state of the art in virus nomenclature and taxonomy. The book lists more than 6,000 viruses classified in 1,950 species and in more than 391 different higher taxa. However, GenBank contains a staggering additional 3,142 "species" unaccounted for by the ICTV report. This paper reviews the reasons for such a situation and suggests what might be done in the near future to remedy this problem, particularly in light of the potential for a ten-fold increase in virus sequencing in the coming years that would generate many unclassified viruses. A number of changes could be made both at ICTV and GenBank to better handle virus taxonomy and classification in the future.


Subject(s)
Advisory Committees , Phylogeny , Viruses/classification , Databases, Genetic , Databases, Nucleic Acid , Sequence Analysis/trends , Software
9.
Virol J ; 2: 21, 2005 Mar 22.
Article in English | MEDLINE | ID: mdl-15784145

ABSTRACT

Cassava is infected by numerous geminiviruses in Africa and India that cause devastating losses to poor farmers. We here describe the molecular diversity of seven representative cassava mosaic geminiviruses (CMGs) infecting cassava from multiple locations in Tanzania. We report for the first time the presence of two isolates in East Africa: (EACMCV-[TZ1] and EACMCV-[TZ7]) of the species East African cassava mosaic Cameroon virus, originally described in West Africa. The complete nucleotide sequence of EACMCV-[TZ1] DNA-A and DNA-B components shared a high overall sequence identity to EACMCV-[CM] components (92% and 84%). The EACMCV-[TZ1] and -[TZ7] genomic components have recombinations in the same genome regions reported in EACMCV-[CM], but they also have additional recombinations in both components. Evidence from sequence analysis suggests that the two strains have the same ancient origin and are not recent introductions. EACMCV-[TZ1] occurred widely in the southern part of the country. Four other CMG isolates were identified: two were close to the EACMV-Kenya strain (named EACMV-[KE/TZT] and EACMV-[KE/TZM] with 96% sequence identity); one isolate, TZ10, had 98% homology to EACMV-UG2Svr and was named EACMV-UG2 [TZ10]; and finally one isolate was 95% identical to EACMV-[TZ] and named EACMV-[TZ/YV]. One isolate of African cassava mosaic virus with 97% sequence identity with other isolates of ACMV was named ACMV-[TZ]. It represents the first ACMV isolate from Tanzania to be sequenced. The molecular variability of CMGs was also evaluated using partial B component nucleotide sequences of 13 EACMV isolates from Tanzania. Using the sequences of all CMGs currently available, we have shown the presence of a number of putative recombination fragments that are more prominent in all components of EACMV than in ACMV. This new knowledge about the molecular CMG diversity in East Africa, and in Tanzania in particular, has led us to hypothesize about the probable importance of this part of Africa as a source of diversity and evolutionary change both during the early stages of the relationship between CMGs and cassava and in more recent times. The existence of multiple CMG isolates with high DNA genome diversity in Tanzania and the molecular forces behind this diversity pose a threat to cassava production throughout the African continent.


Subject(s)
Biological Evolution , Geminiviridae/genetics , Genetic Variation , Manihot/virology , Base Sequence , DNA, Viral/genetics , Genes, Viral , Tanzania
10.
Phytopathology ; 95(5): 549-55, 2005 May.
Article in English | MEDLINE | ID: mdl-18943321

ABSTRACT

ABSTRACT Numerous whitefly-transmitted viral diseases of tomato have emerged in countries around the Nile and Mediterranean Basins the last 20 years. These diseases are caused by monopartite geminiviruses (family Gemini viridae) belonging to the genus Begomovirus that probably resulted from numerous recombination events. The molecular biodiversity of these viruses was investigated to better appreciate the role and importance of recombination and to better clarify the phylogenetic relationships and classification of these viruses. The analysis partitioned the tomato-infecting begomoviruses from this region into two major clades, Tomato yellow leaf curl virus and Tomato yellow leaf curl Sardinia virus. Phylogenetic and pairwise analyses together with an evaluation for gene conversion were performed from which taxonomic classification and virus biodiversity conclusions were drawn. Six recombination hotspots and three homogeneous zones within the genome were identified among the tomatoinfecting isolates and species examined here, suggesting that the recombination events identified were not random occurrences.

12.
Arch Virol ; 150(3): 459-79, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15592889

ABSTRACT

A phylogenetic analysis of the optimised nucleotide (nt) alignment of the entire ORFs of a representative of each fully-sequenced species in the family Potyviridae provided strong support for several subgroups within the genus Potyvirus. A complete set of two-way comparisons was done between the sequences for the entire ORF and for each gene amongst all the 187 complete sequences from the family. Most species had 50-55% nt identity to other members of their genus in their ORFs but there were significant groups of more closely related species and species demarcation criteria were <76% nt identity and <82% amino acid identity. The corresponding thresholds for species demaracation using nt identity values for the individual genes ranged from 58% (P1 gene) to 74-78% (other genes) although a few comparisons between different species exceeded these values. For the entire ORF, genus demarcation criteria were <46% nt identity but this did not separate rymoviruses from potyviruses. Comparisons in the CI gene most accurately reflected those for the complete ORF and this region would therefore be the best for diagnostic and taxonomic studies if only a sub-portion of the genome is to be sequenced. Further comparisons were then made using all the 1220 complete capsid protein (CP) genes. These studies suggest that 76-77% nt identity is the optimal species demarcation criterion for the CP. The study has also helped to allocate the correct virus name to some sequences from the international databases that currently have incorrect or redundant names. The taxonomic status of the current genus Rymovirus and of three unassigned species in the family is discussed. Significant discontinuities in the distributions within and between the currently defined species suggest that the continuum of variation that is theoretically available is constrained or disrupted by molecular barriers that must have some biological significance.


Subject(s)
Potyviridae/genetics , Capsid Proteins/genetics , Open Reading Frames , Phylogeny , Species Specificity
13.
Arch Virol ; 149(5): 1045-60, 2004 May.
Article in English | MEDLINE | ID: mdl-15098118

ABSTRACT

The new plant virus family Flexiviridae is described. The family is named because its members have flexuous virions and it includes the existing genera Allexivirus, Capillovirus, Carlavirus, Foveavirus, Potexvirus, Trichovirus and Vitivirus, plus the new genus Mandarivirus together with some related viruses not assigned to any genus. The family is justified from phylogenetic analyses of the polymerase and coat protein (CP) sequences. To help to define suitable molecular criteria for demarcation of species, a complete set of pairwise comparisons was made using the nucleotide (nt) and amino acid (aa) sequences of each fully-sequenced gene from every available accession in the family. Based on the distributions and on inspection of the data, it was concluded that, as a general rule, distinct species have less than ca. 72% identical nt or 80% identical aa between their entire CP or replication protein genes.


Subject(s)
Plant Viruses/classification , Capsid Proteins/genetics , DNA-Binding Proteins/genetics , Phylogeny , Plant Viruses/genetics , RNA-Dependent RNA Polymerase/genetics , Replication Protein A , Species Specificity
14.
Arch Virol ; 149(4): 699-712, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15045558

ABSTRACT

The assembly of Tobacco etch potyvirus (TEV) coat protein (CP) and truncated mutants in Escherichia coli was studied. CP from which 28, 63 or 112 amino acids were deleted from the N-terminus polymerized into potyvirus-like particles (PVLPs). These structures were more rigid and progressively smaller in diameter than those produced by full length TEV-CP. CP from which 175 N-terminal amino acids were removed, failed to polymerize. A fragment containing amino acids 131 to 206 of TEV-CP is sufficient for PVLP assembly in E. coli. To determine the function of the highly conserved amino acids Ser152, Arg154, and Asp198 point mutants were generated. The mutant CPDelta63(Asp198Glu) exhibited different spectral properties following circular dichroism analysis showing a lower amount of alpha-helix compared to the wild type molecule. No differences were observed in spectra obtained from fluorescence spectroscopy. The point mutants bind RNA in vitro to the same degree as the wild type protein. However, while the wild type and the Arg154Gln mutant CP were each able to form PVLPs in E. coli, the Asp198Glu and the double mutant Ser152Pro/Arg154Gln mutants did not. These results suggest that the Asp198Glu mutation has an altered secondary structure which affects the capacity of the protein to polymerize but did not affect in vitro protein-RNA interactions.


Subject(s)
Capsid Proteins/metabolism , Potyvirus/metabolism , RNA, Viral/metabolism , Capsid Proteins/chemistry , Capsid Proteins/genetics , Escherichia coli/metabolism , Point Mutation , Potyvirus/chemistry , Potyvirus/genetics , Protein Binding , Protein Structure, Secondary , Recombinant Proteins/chemistry , Nicotiana/virology
15.
Plant Mol Biol ; 56(4): 585-99, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15630622

ABSTRACT

Cassava mosaic disease (CMD) caused by cassava mosaic geminiviruses (CMGs) (Geminiviridae:Begomovirus) is undoubtedly the most important constraint to the production of cassava in Africa at the outset of the 21st century. Although the disease was recorded for the first time in the latter part of the 19th century, for much of the intervening period it has been relatively benign in most of the areas where it occurs and has generally been considered to be of minor economic significance. Towards the end of the 20th century, however, the inherent dynamism of the causal viruses was demonstrated, as a recombinant hybrid of the two principal species was identified, initially from Uganda, and shown to be associated with an unusually severe and rapidly spreading epidemic of CMD. Subsequent spread throughout East and Central Africa, the consequent devastation of production of the cassava crop, a key staple in much of this region, and the observation of similar recombination events elsewhere, has once again demonstrated the inherent danger posed to man by the capacity of these viruses to adapt to their environment and optimally exploit their relationships with the whitefly vector, plant host and human cultivator. In this review of cassava mosaic geminiviruses in Africa, we examine each of these relationships, and highlight the ways in which the CMGs have exploited them to their own advantage.


Subject(s)
Geminiviridae/genetics , Manihot/virology , Plant Diseases/virology , Africa , Agriculture/methods , Breeding , Crops, Agricultural/virology , Geminiviridae/classification , Geminiviridae/growth & development , Genetic Variation , Phylogeny , Recombination, Genetic , Virus Replication
18.
Phytopathology ; 93(12): 1485-95, 2003 Dec.
Article in English | MEDLINE | ID: mdl-18943612

ABSTRACT

ABSTRACT The biological and molecular properties of Tomato leaf curl Gujarat virus from Varanasi, India (ToLCGV-[Var]) were characterized. ToLCGV-[Var] could be transmitted by grafting and through whitefly transmission in a persistent manner. The full-length genome of DNA-A and DNA-B of ToLCGV-[Var] was cloned in pUC18. Sequence analysis revealed that DNA-A (AY190290) is 2,757 bp and DNA-B (AY190291) is 2,688 bp in length. ToLCGV-[Var] could infect and cause symptoms in tomato, pepper, Nicotiana benthamiana, and N. tabacum when partial tandem dimeric constructs of DNA-A and DNA-B were co-inoculated by particle bombardment. DNA-A alone also is infectious, but symptoms were milder and took longer to develop. ToLCGV-Var virus can be transmitted through sap inoculation from infected tomato plants to the above-mentioned hosts causing the same symptoms. Open reading frames (ORFs) in both DNA-A and DNA-B are organized similarly to those in other begomoviruses. DNA-A and DNA-B share a common region of 155 bp with only 60% sequence identity. DNA-B of ToLCGV-[Var] shares overall 80% identity with DNA-B of Tomato leaf curl New Delhi virus-Severe (ToLCNDV-Svr) and 75% with ToLCNDV-[Lucknow] (ToLCNDV-[Luc]). Comparison of DNA-A sequence with different begomoviruses indicates that ToLCGV-[Var] shares 84% identity with Tomato leaf curl Karnataka virus (ToLCKV) and 66% with ToLCNDV-Svr. ToLCGV-[Var] shares a maximum of 98% identity with another isolate of the same region (ToLCGV-[Mir]; AF449999) and 97% identity with one isolate from Gujarat (ToLCGV-[Vad]; AF413671). All three viruses belong to the same species that is distinct from all the other geminivirus species described so far in the genus Begomovirus of the family Geminiviridae. The name Tomato leaf curl Gujarat virus is proposed because the first sequence was taken from an isolate of Gujarat, India.

19.
Phytopathology ; 93(3): 270-7, 2003 Mar.
Article in English | MEDLINE | ID: mdl-18944336

ABSTRACT

ABSTRACT Pepper huasteco virus (PHV) and Pepper golden mosaic virus (PepGMV) are found in mixtures in many horticultural crops in Mexico. This combination constitutes an interesting, naturally occurring model system to study several aspects of virus-virus interactions. Possible interactions between PHV and PepGMV were studied at four levels: symptom expression, gene expression, replication, and movement. In terms of symptom expression, the interaction was shown to be host-dependent because antagonism was observed in pepper, whereas synergism was detected in tobacco and Nicotiana benthamiana. PHV and PepGMV did not generate viable pseudorecombinant viruses; however, their replication is increased during mixed infections. An asymmetric complementation in movement was observed because PHV was able to support the systemic movement of PepGMV A whereas PepGMV did not support the systemic distribution of PHV A. Heterologous transactivation of both coat protein promoters also was detected. Several conclusions can be drawn from these experiments. First, viruses coinfecting the same plant can interact at several levels (replication, movement) and in different manners (synergism, antagonism); some interactions might be host dependent; and natural mixed infections could be a potential source of geminivirus variability by generating viable tripartite combinations that could facilitate recombination events.

20.
Plant Dis ; 87(3): 313, 2003 Mar.
Article in English | MEDLINE | ID: mdl-30812767

ABSTRACT

In November 2001, a leaf curl disease of tomato, manifested by yellowing of leaf lamina, upward leaf curling, leaf distortion, shrinking of leaf surface, and stunted plant growth was observed in tomato-growing areas in the Varanasi and Mirzapur districts of eastern Uttar Pradesh, India, which caused yield losses up to 100%. The causal agent was infective to tomato cv. Punjab Chuhara by whiteflies and grafting. Inoculated plants developed symptoms observed in naturally infected tomatoes. Viral DNA was isolated from artificially inoculated tomato plants using 1% CTAB (2) followed by a concentration of supercoiled DNA by alkaline denaturation (1). A geminivirus was confirmed by polymerase chain reaction using DNA-A degenerate primers (3), and a 550-bp amplified product was obtained from artificially and naturally infected plants. Full-length viral genomes of DNA-A and DNA-B were cloned in plasmid pUC18 at HindIII and XbaI sites, respectively. Partial tandem dimers of the viral clones were infective to Nicotiana benthamiana and tomato cv. Organ Spring through particle bombardment. Infected N. benthamiana plants exhibited downward and upward leaf curling, big veins, leaf puckering with interveinal chlorosis, and stunting. On tomato, symptoms were the same as those seen on naturally infected plants. Cloned DNA also infected Capsicum annuum cv. California Wonder (upward leaf curling and stunting) and tobacco cv. Xanthi (leaf curling and crinkling) but failed to infect Phaseolus vulgaris, okra, cotton, and N. glutinosa. The Varanasi isolate was sap transmissible (0.1 M potassium phosphate buffer, pH 7.0) from the bombarded plants to N. benthamiana and tomato cv. Organ Spring. DNA-A alone infected N. benthamiana (upward leaf curling and big veins) and tomato cv. Organ Spring (mild leaf curl), but symptoms were delayed and milder. Full-length genome sequencing revealed DNA-A (AY190290) contained 2,757 nt and DNA-B (AY190291) contained 2,688 nt. DNA-A of the Varanasi isolate shares 98.4% identity with a DNA-A sequence (AF449999) obtained from a tomato showing leaf curl symptoms from the same region and 97.1% identity with an isolate from Gujarat (900 km from Varanasi). All three sequences represent isolates of the same species, herein called Tomato leaf curl Gujarat virus, based on the priority of submission of the DNA sequence for the Gujarat region (ToLCGV; AF 413671). All isolates noted were obtained from GenBank. However, except for the DNA-A sequence, no other information is available for these ToLCGV isolates. DNA-A of the ToLCGV-Varanasi isolate shares 66.8% identity with Tomato leaf curl New Delhi virus, severe strain (ToLCNdV-Svr) (U15015), and 84.1% with Tomato leaf curl Karnataka virus (U38239). No DNA-B has been reported for these two ToLCGV isolates, and no infectious clone proving the etiology of the disease has been constructed, except for ToLCGV-Varanasi. DNA-B of ToLCGV-Varanasi shares 79.2% homology with ToLCNdV-Svr and 84.1% with ToLCNdV-Luc (X89653). These results suggest that the isolate from Varanasi belongs to ToLCGV, a previously undescribed geminivirus species causing a devastating tomato leaf curl disease in Gujarat and Uttar Pradesh. References: (1) H. C. Birnboim and J. Doly. Nucleic Acids Res. 7:1513, 1979. (2) K. M. Srivastava et al. J. Virol. Methods 51:297, 1995. (3) S. D. Wyatt and J. K. Brown. Phytopathology 86:1288, 1996.

SELECTION OF CITATIONS
SEARCH DETAIL
...