Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 39(11): 4249-57, 2005 Jun 01.
Article in English | MEDLINE | ID: mdl-15984807

ABSTRACT

Sewage sludges produced from wastewater treatment plants continue to set environmental problems in terms of volume and way of reuse. Thermal treatment of sewage sludge is considered as an attractive method in reducing sludge volume, and at the same time, it produces reusable byproducts. This paper deals with porous carbonaceous materials production from sewage sludge by pyrolysis (or carbonization) process with a goal of different industrial applications. Carbonization experiments were carried out on two kinds of sludge, namely viscous liquid sludge and limed sludge by varying carbonization temperature between 400 degrees C to 1000 degrees C. The porous structure and surface chemistry of the materials obtained were characterized using nitrogen adsorption, scanning electron microscopy, elemental analysis, Boehm titration, and pH of zero point of charge determination. The results show that basic character of the carbonized residues increases with increasing carbonization temperature. Then, carbonization allows specific surface area and pore volumes to be developed. Carbonized viscous liquid sludge and carbonized limed sludge are mainly mesoporous in nature, with specific surface areas reaching about 100 m2 g(-1) and 60 m2 g(-1), respectively. Finally, adsorption experiments, in aqueous solution, were carried out and show that carbonized viscous liquid sludges and limed sludge remove effectively the metallic ion Cu2+, acid and basic dyes, and phenol. Pyrolyzed sludges properties seem to be encouraging for the preparation of activated carbon by physical activation process.


Subject(s)
Carbon/chemistry , Sewage/chemistry , Waste Disposal, Fluid/methods , Water Purification/methods , Adsorption , Calcium/chemistry , Copper/chemistry , Copper/isolation & purification , Hydrogen-Ion Concentration , Incineration , Kinetics , Sewage/microbiology , Temperature , Waste Disposal, Fluid/instrumentation , Water Purification/instrumentation
2.
Water Sci Technol ; 49(1): 139-46, 2004.
Article in English | MEDLINE | ID: mdl-14979549

ABSTRACT

Sewage sludges produced from wastewater treatment plants continue to create environmental problems in terms of volume and method of valorization. Thermal treatment of sewage sludge is considered as an attractive method in reducing sludge volume which at the same time produces reusable by-products. This paper deals with the first step of activated carbon production from sewage sludge, the carbonization step. Experiments are carried out on viscous liquid sludge and limed sludge by varying carbonization temperature and heating rate. The results show that carbonized residue properties are interesting for activated carbon production.


Subject(s)
Carbon/isolation & purification , Sewage/chemistry , Carbon/chemistry , Conservation of Natural Resources , Waste Disposal, Fluid
3.
Environ Technol ; 24(6): 735-43, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12868529

ABSTRACT

This work investigates the coupling of a membrane technique, ultrafiltration, with a recent adsorbent, activated carbon cloth for the treatment of industrial highly coloured wastewaters. A first experimental part shows the high treatment ability of this process for fountain-pen inks effluents arising from the rinsing of vats in which inks were produced. Whereas ultrafiltration enables more than 97% of colour removal, COD and DOC are not completely retained and a residual value of 1,700 mg l(-1) of DOC is obtained in the permeate. The second step of the process, activated carbon cloth, allows residual organic matter to be removed and a complete discolouring of the permeate. Adsorption capacities of COD and DOC are high, equal to 500 and 250 mg g(-1) respectively. Furthermore, this adsorbent induces a complete removal of glycol compounds (acting as antifreeze) which were not retined by a nanofiltration technique. A second part is an evaluation of the economic feasibility of such an integrated process. Only direct costs are considered at this phase of the study, and are divided into fixed costs (equipment, depreciation, maintenance), variable costs (electricity and consumption) and labour costs. The technical-economic study is carried out for two configurations: a low capacity unit (the UF membrane area is 2.4 m2) and an industrial capacity unit (with a 100 m2 UF membrane). Costs per treated m3 are respectively 111 and 32 euros, with costs partitioning which are dependent on the unit capacity.


Subject(s)
Carbon/chemistry , Coloring Agents/isolation & purification , Water Purification/methods , Absorption , Coloring Agents/chemistry , Costs and Cost Analysis , Filtration , Membranes, Artificial , Oxygen , Textile Industry , Waste Disposal, Fluid , Water Purification/economics
4.
Chemosphere ; 47(3): 333-42, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11996155

ABSTRACT

A fixed-bed study was carried out by using cells of Pseudomonas aeruginosa immobilized in polyacrylamide gel as a biosorbent for the removal of lanthanide (La, Eu, Yb) ions from aqueous solutions. The effects of superficial liquid velocity based on empty column, particle size, influent concentration and bed depth on the lanthanum breakthrough curves were investigated. Immobilized biomass effectively removed lanthanum from a 6 mM solution with a maximum adsorption capacity of 342 micromolg(-1) (+/-10%) corresponding closely to that observed in earlier batch studies with free bacterial cells. The Bohart and Adams sorption model was employed to determine characteristic parameters useful for process design. Results indicated that the immobilized cells of P. aeruginosa enable removal of lanthanum, europium and ytterbium ions from aqueous effluents with significant and similar maximum adsorption capacities. Experiments with a mixed cation solution showed that the sequence of preferential biosorption was Eu3+ > or = Yb3+ > La3+. Around 96+/-4% of the bound lanthanum was desorbed from the column and concentrated by eluting with a 0.1 M EDTA solution. The feasibility of regenerating and reusing the biomass through three adsorption/desorption cycles was suggested. Neural networks were used to model breakthrough curves performed in the dynamic process. The ability of this statistical tool to predict the breakthrough times was discussed.


Subject(s)
Lanthanoid Series Elements/pharmacokinetics , Neural Networks, Computer , Pseudomonas aeruginosa/physiology , Water Pollutants/pharmacokinetics , Adsorption , Biomass , Bioreactors , Forecasting , Particle Size , Water Movements , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...