Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 48(22): 5839-5842, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37966732

ABSTRACT

Phase-contrast imaging, dark-field, and directional dark-field imaging are recent x ray imaging modalities that have been demonstrated to reveal different information and contrast from those provided by conventional x ray imaging. Access to these new types of images is currently limited because the acquisitions require coherent sources such as synchrotron radiation or complicated optical setups. This Letter demonstrates the possibility of efficiently performing phase-contrast, dark-field, and directional dark-field imaging on a low-coherence laboratory system equipped with a conventional x ray tube, using a simple, fast, and robust single-mask technique.

2.
Nanoscale ; 14(12): 4690-4704, 2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35262538

ABSTRACT

We describe the outcome of a large international interlaboratory study of the measurement of particle number concentration of colloidal nanoparticles, project 10 of the technical working area 34, "Nanoparticle Populations" of the Versailles Project on Advanced Materials and Standards (VAMAS). A total of 50 laboratories delivered results for the number concentration of 30 nm gold colloidal nanoparticles measured using particle tracking analysis (PTA), single particle inductively coupled plasma mass spectrometry (spICP-MS), ultraviolet-visible (UV-Vis) light spectroscopy, centrifugal liquid sedimentation (CLS) and small angle X-ray scattering (SAXS). The study provides quantitative data to evaluate the repeatability of these methods and their reproducibility in the measurement of number concentration of model nanoparticle systems following a common measurement protocol. We find that the population-averaging methods of SAXS, CLS and UV-Vis have high measurement repeatability and reproducibility, with between-labs variability of 2.6%, 11% and 1.4% respectively. However, results may be significantly biased for reasons including inaccurate material properties whose values are used to compute the number concentration. Particle-counting method results are less reproducibile than population-averaging methods, with measured between-labs variability of 68% and 46% for PTA and spICP-MS respectively. This study provides the stakeholder community with important comparative data to underpin measurement reproducibility and method validation for number concentration of nanoparticles.

3.
Sci Total Environ ; 603-604: 793-806, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-28431758

ABSTRACT

Exposure to airborne agents needs to be assessed in the personal breathing zone by the use of personal measurement equipment. Specific measurement devices for assessing personal exposure to airborne nanomaterials have only become available in the recent years. They can be differentiated into direct-reading personal monitors and personal samplers that collect the airborne nanomaterials for subsequent analyses. This article presents a review of the available personal monitors and samplers and summarizes the available literature regarding their accuracy, comparability and field applicability. Due to the novelty of the instruments, the number of published studies is still relatively low. Where applicable, literature data is therefore complemented with published and unpublished results from the recently finished nanoIndEx project. The presented data show that the samplers and monitors are robust and ready for field use with sufficient accuracy and comparability. However, several limitations apply, e.g. regarding the particle size range of the personal monitors and their in general lower accuracy and comparability compared with their stationary counterparts. The decision whether a personal monitor or a personal sampler shall be preferred depends strongly on the question to tackle. In many cases, a combination of a personal monitor and a personal sampler may be the best choice to obtain conclusive results.


Subject(s)
Air Pollutants, Occupational/analysis , Environmental Monitoring , Inhalation Exposure/analysis , Nanostructures/analysis , Occupational Exposure/analysis , Humans , Particle Size , Workplace
4.
Nanoscale ; 5(3): 953-60, 2013 Feb 07.
Article in English | MEDLINE | ID: mdl-23238262

ABSTRACT

The magnetic 2D to 3D crossover behavior of well-ordered arrays of monodomain γ-Fe(2)O(3) spherical nanoparticles with different thicknesses has been investigated by magnetometry and Monte Carlo (MC) simulations. Using the structural information of the arrays obtained from grazing incidence small-angle X-ray scattering and scanning electron microscopy together with the experimentally determined values for the saturation magnetization and magnetic anisotropy of the nanoparticles, we show that MC simulations can reproduce the thickness-dependent magnetic behavior. The magnetic dipolar particle interactions induce a ferromagnetic coupling that increases in strength with decreasing thickness of the array. The 2D to 3D transition in the magnetic properties is mainly driven by a change in the orientation of the magnetic vortex states with increasing thickness, becoming more isotropic as the thickness of the array increases. Magnetic anisotropy prevents long-range ferromagnetic order from being established at low temperature and the nanoparticle magnetic moments instead freeze along directions defined by the distribution of easy magnetization directions.


Subject(s)
Magnetic Fields , Magnetite Nanoparticles/chemistry , Magnetite Nanoparticles/ultrastructure , Models, Chemical , Models, Molecular , Anisotropy , Computer Simulation , Molecular Conformation
5.
Sci Technol Adv Mater ; 14(2): 023001, 2013 Apr.
Article in English | MEDLINE | ID: mdl-27877568

ABSTRACT

This review describes recent efforts on the synthesis, dispersion and surface functionalization of the three dominating oxide nanoparticles used for photocatalytic, UV-blocking and sunscreen applications: titania, zinc oxide, and ceria. The gas phase and liquid phase synthesis is described briefly and examples are given of how weakly aggregated photocatalytic or UV-absorbing oxide nanoparticles with different composition, morphology and size can be generated. The principles of deagglomeration are reviewed and the specific challenges for nanoparticles highlighted. The stabilization of oxide nanoparticles in both aqueous and non-aqueous media requires a good understanding of the magnitude of the interparticle forces and the surface chemistry of the materials. Quantitative estimates of the Hamaker constants in various media and measurements of the isoelectric points for the different oxide nanoparticles are presented together with an overview of different additives used to prepare stable dispersions. The structural and chemical requirements and the various routes to produce transparent photocatalytic and nanoparticle-based UV-protecting coatings, and UV-blocking sunscreens are described and discussed.

6.
Langmuir ; 27(14): 8659-64, 2011 Jul 19.
Article in English | MEDLINE | ID: mdl-21644514

ABSTRACT

The Hamaker constants for iron oxide nanoparticles in various media have been calculated using Lifshitz theory. Expressions for the dielectric responses of three iron oxide phases (magnetite, maghemite, and hematite) were derived from recently published optical data. The nonretarded Hamaker constants for the iron oxide nanoparticles interacting across water, A(1w1) = 33 - 39 zJ, correlate relatively well with previous reports, whereas the calculated values in nonpolar solvents (hexane and toluene), A(131) = 9 - 29 zJ, are much lower than the previous estimates, particularly for magnetite. The magnitude of van der Waals interactions varies significantly between the studied phases (magnetite < maghemite < hematite), which highlights the importance of a thorough characterization of the particles. The contribution of magnetic dispersion interactions for particle sizes in the superparamagnetic regime was found to be negligible. Previous conjectures related to colloidal stability and self-assembly have been revisited on the basis of the new Lifshitz values of the Hamaker constants.


Subject(s)
Magnetite Nanoparticles/chemistry , Colloids , Silicon Compounds/chemistry , Silicon Dioxide/chemistry
7.
Nanoscale ; 2(1): 69-71, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20648365

ABSTRACT

Rapid microtiter assays that utilize the time-resolved fluorescence resonance energy transfer or quenching of dye-labeled proteins adsorbed onto the surfaces of polystyrene or maghemite nanoparticles have been developed for the detection and quantification of trace amounts of surfactants at concentrations down to 10 nM.


Subject(s)
Fluorometry/methods , Nanoparticles/chemistry , Surface-Active Agents/analysis , Coloring Agents/chemistry , Ferric Compounds/chemistry , Fluorescence Resonance Energy Transfer , Polystyrenes/chemistry , Proteins/chemistry
8.
J Colloid Interface Sci ; 319(1): 144-51, 2008 Mar 01.
Article in English | MEDLINE | ID: mdl-18067910

ABSTRACT

Titania nanoparticles have been incorporated into spherical mesoporous silica powders by an aerosol-assisted synthesis process from both aqueous and ethanol-based precursor dispersions. Transmission electron microscopy (TEM) showed that the titania nanoparticles exist as single particles or small aggregates within the mesoporous carrier particles and analysis of the nitrogen adsorption isotherms proved that the pore blocking of the particles is small. Particle size and zeta potential measurements showed that the addition of tetraethoxysiloxane (TEOS), and also hexadecyl trimethyl ammonium bromide (C16TAB) induced flocculation of the TiO2 nanoparticles. The higher yield and narrower size distribution of the composite powder produced from ethanol-based dispersions compared to the aqueous dispersions could be related to a smaller degree of aggregation, indicated by rheological measurements.


Subject(s)
Aerosols/chemistry , Colloids/chemistry , Nanoparticles/chemistry , Titanium/chemistry , Particle Size , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL
...