Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(8): eabq0619, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36812310

ABSTRACT

The predatory deltaproteobacterium Myxococcus xanthus uses a helically-trafficked motor at bacterial focal-adhesion (bFA) sites to power gliding motility. Using total internal reflection fluorescence and force microscopies, we identify the von Willebrand A domain-containing outer-membrane (OM) lipoprotein CglB as an essential substratum-coupling adhesin of the gliding transducer (Glt) machinery at bFAs. Biochemical and genetic analyses reveal that CglB localizes to the cell surface independently of the Glt apparatus; once there, it is recruited by the OM module of the gliding machinery, a heteroligomeric complex containing the integral OM ß barrels GltA, GltB, and GltH, as well as the OM protein GltC and OM lipoprotein GltK. This Glt OM platform mediates the cell-surface accessibility and retention of CglB by the Glt apparatus. Together, these data suggest that the gliding complex promotes regulated surface exposure of CglB at bFAs, thus explaining the manner by which contractile forces exerted by inner-membrane motors are transduced across the cell envelope to the substratum.


Subject(s)
Myxococcales , Myxococcales/metabolism , Focal Adhesions/metabolism , Adhesins, Bacterial , Bacterial Adhesion , Lipoproteins , Bacterial Proteins/metabolism
2.
Dev Cell ; 57(19): 2321-2333.e9, 2022 10 10.
Article in English | MEDLINE | ID: mdl-36220082

ABSTRACT

Blood-vessel formation generates unique vascular patterns in each individual. The principles governing the apparent stochasticity of this process remain to be elucidated. Using mathematical methods, we find that the transition between two fundamental vascular morphogenetic programs-sprouting angiogenesis and vascular remodeling-is established by a shift of collective front-to-rear polarity of endothelial cells in the mouse retina. We demonstrate that the competition between biochemical (VEGFA) and mechanical (blood-flow-induced shear stress) cues controls this collective polarity shift. Shear stress increases tension at focal adhesions overriding VEGFA-driven collective polarization, which relies on tension at adherens junctions. We propose that vascular morphogenetic cues compete to regulate individual cell polarity and migration through tension shifts that translates into tissue-level emergent behaviors, ultimately leading to uniquely organized vascular patterns.


Subject(s)
Cell Polarity , Endothelial Cells , Adherens Junctions/metabolism , Animals , Cell Movement/physiology , Cell Polarity/physiology , Endothelial Cells/metabolism , Mice , Morphogenesis , Retina/metabolism
3.
Nature ; 539(7630): 530-535, 2016 11 24.
Article in English | MEDLINE | ID: mdl-27749817

ABSTRACT

Various rod-shaped bacteria mysteriously glide on surfaces in the absence of appendages such as flagella or pili. In the deltaproteobacterium Myxococcus xanthus, a putative gliding motility machinery (the Agl-Glt complex) localizes to so-called focal adhesion sites (FASs) that form stationary contact points with the underlying surface. Here we show that the Agl-Glt machinery contains an inner-membrane motor complex that moves intracellularly along a right-handed helical path; when the machinery becomes stationary at FASs, the motor complex powers a left-handed rotation of the cell around its long axis. At FASs, force transmission requires cyclic interactions between the molecular motor and the adhesion proteins of the outer membrane via a periplasmic interaction platform, which presumably involves contractile activity of motor components and possible interactions with peptidoglycan. Our results provide a molecular model of bacterial gliding motility.


Subject(s)
Bacterial Adhesion/physiology , Bacterial Proteins/metabolism , Focal Adhesions/metabolism , Myxococcus xanthus/physiology , Bacterial Outer Membrane Proteins/metabolism , Cell Movement , Molecular Motor Proteins/metabolism , Myxococcus xanthus/cytology , Periplasm/metabolism , Rotation
4.
J Cell Biol ; 210(2): 243-56, 2015 Jul 20.
Article in English | MEDLINE | ID: mdl-26169353

ABSTRACT

In Myxococcus xanthus the gliding motility machinery is assembled at the leading cell pole to form focal adhesions, translocated rearward to propel the cell, and disassembled at the lagging pole. We show that MglA, a Ras-like small G-protein, is an integral part of this machinery. In this function, MglA stimulates the assembly of the motility complex by directly connecting it to the MreB actin cytoskeleton. Because the nucleotide state of MglA is regulated spatially and MglA only binds MreB in the guanosine triphosphate-bound form, the motility complexes are assembled at the leading pole and dispersed at the lagging pole where the guanosine triphosphatase activating protein MglB disrupts the MglA-MreB interaction. Thus, MglA acts as a nucleotide-dependent molecular switch to regulate the motility machinery spatially. The function of MreB in motility is independent of its function in peptidoglycan synthesis, representing a coopted function. Our findings highlight a new function for the MreB cytoskeleton and suggest that G-protein-cytoskeleton interactions are a universally conserved feature.


Subject(s)
Bacterial Proteins/metabolism , Cytoskeletal Proteins/metabolism , Myxococcus xanthus/metabolism , Bacterial Adhesion , Focal Adhesions/metabolism , Myxococcus xanthus/cytology , Peptidoglycan/biosynthesis , Protein Binding , Protein Interaction Mapping , Protein Transport
5.
Microbiology (Reading) ; 160(Pt 9): 1940-1952, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25009238

ABSTRACT

Pseudomonas aeruginosa is an opportunistic human pathogen implicated in nosocomial infection and infecting people with compromised immune systems such as cystic fibrosis patients. Although multiple genes involved in P. aeruginosa pathogenesis have been characterized, the overall mechanism of virulence is not fully understood. In this study, we identified a functional two-partner secretion (TPS) system, composed of the PdtA exoprotein and its cognate pore-forming ß-barrel PdtB transporter, which is implicated in the virulence of P. aeruginosa. We found that the predicted PdtA exoprotein is related to the HMW-like adhesins subfamily TPS systems. We demonstrate here that limitation of inorganic phosphate (Pi) allows the production of PdtA protein. We show that PdtA is processed during its outer-membrane translocation, with an N-terminal domain released into the extracellular environment and a C-terminal domain associated with the outer membrane of the cell. We also obtained evidence that the transport of PdtA is strictly dependent on the production of PdtB, a result confirming that these proteins constitute a functional TPS system. Furthermore, using the Caenorhabditis elegans model of infection, we show that a pdtA mutant is less virulent than the wild-type strain.


Subject(s)
Bacterial Secretion Systems , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Virulence Factors/metabolism , Adhesins, Bacterial/genetics , Adhesins, Bacterial/metabolism , Animals , Caenorhabditis elegans/microbiology , Disease Models, Animal , Phosphates/metabolism , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/growth & development , Virulence
6.
Science ; 343(6167): 204-8, 2014 Jan 10.
Article in English | MEDLINE | ID: mdl-24408438

ABSTRACT

Many bacterial pathogens cause persistent infections despite repeated antibiotic exposure. Bacterial persisters are antibiotic-tolerant cells, but little is known about their growth status and the signals and pathways leading to their formation in infected tissues. We used fluorescent single-cell analysis to identify Salmonella persisters during infection. These were part of a nonreplicating population formed immediately after uptake by macrophages and were induced by vacuolar acidification and nutritional deprivation, conditions that also induce Salmonella virulence gene expression. The majority of 14 toxin-antitoxin modules contributed to intracellular persister formation. Some persisters resumed intracellular growth after phagocytosis by naïve macrophages. Thus, the vacuolar environment induces phenotypic heterogeneity, leading to either bacterial replication or the formation of nonreplicating persisters that could provide a reservoir for relapsing infection.


Subject(s)
Macrophages/microbiology , Salmonella Infections/immunology , Salmonella Infections/microbiology , Salmonella typhimurium/growth & development , Animals , Anti-Bacterial Agents/pharmacology , Antitoxins/genetics , Bacterial Toxins/genetics , Cefotaxime/pharmacology , Gene Deletion , Gene Expression Regulation, Bacterial , Lymph Nodes/immunology , Lymph Nodes/microbiology , Mesentery/immunology , Mesentery/microbiology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Operon/genetics , Phagocytosis , Pyrophosphatases/genetics , Recurrence , Salmonella typhimurium/drug effects , Salmonella typhimurium/genetics , Spleen/immunology , Spleen/microbiology , Virulence
7.
Microbiology (Reading) ; 159(Pt 7): 1315-1327, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23657684

ABSTRACT

The cell-surface signalling (CSS) system represents an important regulatory mechanism by which Gram-negative bacteria respond to the environment. Gene regulation by CSS systems is particularly present and important in the opportunistic human pathogen Pseudomonas aeruginosa. In this bacterium, these mechanisms regulate mainly the uptake of iron, but also virulence functions. The latter is the case for the P. aeruginosa PUMA3 CSS system formed by the putative VreA receptor, the σ(VreI) extracytoplasmic function sigma factor and the VreR anti-sigma factor. A role for this system in P. aeruginosa virulence has been demonstrated previously. However, the conditions under which this system is expressed and activated have not been elucidated so far. In this work, we have identified and characterized the global regulatory cascade activating the expression of the PUMA3 system. We show that the PhoB transcriptional regulator, part of the PhoB-PhoR two-component signalling system, can sense a limitation of inorganic phosphate to turn on the expression of the vreA, vreI and vreR genes, which constitute an operon. Upon expression of these genes in this condition, σ(VreI) factor mediates transcription of most, but not all, of the previously identified σ(VreI)-regulated genes. Indeed, we found new σ(VreI)-targeted genes and we show that σ(VreI)-regulon genes are all located immediately downstream to the vreAIR gene cluster.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Heat-Shock Response , Phosphates/pharmacology , Pseudomonas aeruginosa/physiology , Sigma Factor/metabolism , Bacterial Proteins/genetics , Humans , Operon , Phosphates/metabolism , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Sigma Factor/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...