Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 8(11): 2519-2525, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28524661

ABSTRACT

Doping of semiconductor nanocrystals is an emerging tool to control their properties and has recently received increased interest as the means to characterize the impurities and their effect on the electronic characteristics of the nanocrystal evolve. We present a temperature-dependent Raman scattering study of Cu-doped InAs nanocrystals observing changes in the relative scattering intensities of the different modes upon increased dopant concentrations. First, the longitudinal optical (LO) phonon overtone mode is suppressed, indicating weakening of the coupling strength related to the effect of screening by the free electrons. Second, the transverse optical (TO) mode is relatively enhanced compared to the LO mode, which is attributed to the appearance of a coupled phonon-plasmon mode analogous to observations for n-type doped bulk InAs. These signatures indicate that the Cu impurities serve as active dopants and occupy an impurity-related pseudo sub-band akin to the heavy doping limit.

2.
J Phys Chem A ; 120(19): 3088-97, 2016 May 19.
Article in English | MEDLINE | ID: mdl-26720008

ABSTRACT

The effect of Cu impurities on the absorption cross section, the rate of hot exction thermalization, and on exciton recombination processes in InAs quantum dots was studied by femtosecond transient absorption. Our findings reveal dynamic spectral effects of an emergent impurity sub-band near the bottom of the conduction band. Previously hypothesized to explain static photophysical properties of this system, its presence is shown to shorten hot carrier relaxation. Partial redistribution of interband oscillator strength to sub-band levels reduces the band edge bleach per exciton progressively with the degree of doping, even though the total linear absorption cross section at the band edge remains unchanged. In contrast, no doping effects were detected on absorption cross sections high in the conduction band, as expected due to the relatively high density of sates of the undoped QDs.

3.
Biochim Biophys Acta ; 1847(10): 1267-73, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26188375

ABSTRACT

Biological desert sand crusts are the foundation of desert ecosystems, stabilizing the sands and allowing colonization by higher order organisms. The first colonizers of the desert sands are cyanobacteria. Facing the harsh conditions of the desert, these organisms must withstand frequent desiccation-hydration cycles, combined with high light intensities. Here, we characterize structural and functional modifications to the photosynthetic apparatus that enable a cyanobacterium, Leptolyngbya sp., to thrive under these conditions. Using multiple in vivo spectroscopic and imaging techniques, we identified two complementary mechanisms for dissipating absorbed energy in the desiccated state. The first mechanism involves the reorganization of the phycobilisome antenna system, increasing excitonic coupling between antenna components. This provides better energy dissipation in the antenna rather than directed exciton transfer to the reaction center. The second mechanism is driven by constriction of the thylakoid lumen which limits diffusion of plastocyanin to P700. The accumulation of P700(+) not only prevents light-induced charge separation but also efficiently quenches excitation energy. These protection mechanisms employ existing components of the photosynthetic apparatus, forming two distinct functional modes. Small changes in the structure of the thylakoid membranes are sufficient for quenching of all absorbed energy in the desiccated state, protecting the photosynthetic apparatus from photoinhibitory damage. These changes can be easily reversed upon rehydration, returning the system to its high photosynthetic quantum efficiency.

4.
Angew Chem Int Ed Engl ; 54(42): 12463-7, 2015 Oct 12.
Article in English | MEDLINE | ID: mdl-26013838

ABSTRACT

Colloidal semiconductor nanocrystals (NC) have reached a high level of synthetic control allowing the tuning of their properties, and their use in various applications. However, the surface of NCs and in particular their size-dependent capping organic ligand behavior, which play an important role in the NC synthesis, dispersibility, and optoelectronic properties, is still not well understood. We study the size-dependent properties of the ligand shell on the surface of NCs, by embedding surface bound dyes as a probe within the ligand shell. The reorientation times for these dyes show a linear dependence on the NC surface curvature indicating size-dependent change in viscosity, which is related to a change in the density of the ligand layer because of the geometry of the surface, a unique feature of NCs. Understanding the properties of the ligand shell will allow rational design of the surface to achieve the desired properties, providing an additional important knob for tuning their functionality.


Subject(s)
Nanoparticles/chemistry , Semiconductors , Thermodynamics , Anisotropy , Ligands , Particle Size , Surface Properties
5.
Phys Chem Chem Phys ; 16(23): 11245-50, 2014 Jun 21.
Article in English | MEDLINE | ID: mdl-24562323

ABSTRACT

Quantum nano-structures are likely to become primary elements of future devices. However, there are a number of significant scientific challenges to real world applications of quantum devices. These include de-coherence that erodes operation of a quantum device and control issues. In nature, certain processes have been shown to use quantum mechanical processes for overcoming these barriers. One well-known example is the high energy transmission efficiency of photosynthetic light harvesting complexes. Utilizing such systems for fabricating nano-devices provides a new approach to creating self-assembled nano-energy guides. In this study, we use isolated phycocyanin (PC) proteins that can self-assemble into bundles of nanowires. We show two methods for controlling the organization of the bundles. These nanowires exhibit long range quantum energy transfer through hundreds of proteins. Such results provide new efficient building blocks for coupling to nano-devices, and shed light on distribution and the efficiency of energy transfer mechanisms in biological systems and its quantum nature.


Subject(s)
Nanowires/chemistry , Phycocyanin/chemistry , Quantum Theory , Temperature , Energy Transfer , Particle Size , Surface Properties
6.
J Phys Chem Lett ; 4(3): 502-7, 2013 Feb 07.
Article in English | MEDLINE | ID: mdl-26281747

ABSTRACT

Semiconductor heterostructured seeded nanorods exhibit intense polarized emission, and the degree of polarization is determined by their morphology and dimensions. Combined optical and atomic force microscopy were utilized to directly correlate the emission polarization and the orientation of single seeded nanorods. For both the CdSe/CdS sphere-in-rod (S@R) and rod-in-rod (R@R), the emission was found to be polarized along the nanorod's main axis. Statistical analysis for hundreds of single nanorods shows higher degree of polarization, p, for R@R (p = 0.83), in comparison to S@R (p = 0.75). These results are in good agreement with the values inferred by ensemble photoselection anisotropy measurements in solution, establishing its validity for nanorod samples. On this basis, photoselection photoluminescence excitation anisotropy measurements were carried out providing unique information concerning the symmetry of higher excitonic transitions and allowing for a better distinction between the dielectric and the quantum-mechanical contributions to polarization in nanorods.

7.
ACS Nano ; 4(10): 5962-8, 2010 Oct 26.
Article in English | MEDLINE | ID: mdl-20866044

ABSTRACT

Quantum dot sensitized solar cells (QDSSC) may benefit from the ability to tune the quantum dot optical properties and band gap through the manipulation of their size and composition. Moreover, the inorganic nanocrystals may provide increased stability compared to organic sensitizers. We report the facile fabrication of QDSSC by electrophoretic deposition of CdSe QDs onto conducting electrodes coated with mesoporous TiO(2). Unlike prior chemical linker-based methods, no pretreatment of the TiO(2) was needed, and deposition times as short as 2 h were sufficient for effective coating. Cross-sectional chemical analysis shows that the Cd content is nearly constant across the entire TiO(2) layer. The dependence of the deposition on size was studied and successfully applied to CdSe dots with diameters between 2.5 and 5.5 nm as well as larger CdSe quantum rods. The photovoltaic characteristics of the devices are greatly improved compared with those achieved for cells prepared with a linker approach, reaching efficiencies as high as 1.7%, under 1 sun illumination conditions, after treating the coated electrodes with ZnS. Notably, the absorbed photon to electron conversion efficiencies did not show a clear size-dependence indicating efficient electron injection even for the larger QD sizes. The electrophoretic deposition method can be easily expanded and applied for preparations of QDSSCs using diverse colloidal quantum dot and quantum rod materials for sensitization.

8.
Nano Lett ; 10(7): 2416-20, 2010 Jul 14.
Article in English | MEDLINE | ID: mdl-20507148

ABSTRACT

Electrical current measurements through individually wired colloidal CdSe nanorods exhibit pronounced multistability. This current switching is analogous to the widely observed fluorescence intermittency in similar systems and may be associated with surface charge dynamics. Such association is quantitatively established for the case when the current is bistable, where the probability of the sojourn time t at the high or low current state follows an exponential dependence. Remarkably, this behavior can be modeled by charging dynamics of a single surface trap, whose position could be estimated from the intermittent current-voltage characteristics. The methodology presented here provides a unique route for charge dynamic sensing at the nanoscale, where the nanorod senses its own surface charge.

9.
Nano Lett ; 9(11): 3671-5, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19691333

ABSTRACT

We report wiring of individual colloidal nanorods (NRs), 30-60 nm long by 3.5-5 nm diameter. Strong electrical coupling is achieved by electron beam induced deposition (EBID) of metallic lines targeting NR tips with nanometric precision. At T = 4 K many devices exhibit smooth I(V) curves with no sharp onset features, which remarkably fit a Fowler-Nordheim tunneling model. All devices exhibit an anomalous exponential temperature dependence of the form I approximately exp(T/T(0)). This irregular behavior cannot be explained by any hopping or activation model and is interpreted by accounting for the lowering of the NR conduction band due to lattice dilation and phonon coupling.

SELECTION OF CITATIONS
SEARCH DETAIL
...