Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Genet ; 13(6): e1006825, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28640802

ABSTRACT

Peroxisome biogenesis disorders (PBD) are a group of multi-system human diseases due to mutations in the PEX genes that are responsible for peroxisome assembly and function. These disorders lead to global defects in peroxisomal function and result in severe brain, liver, bone and kidney disease. In order to study their pathogenesis we undertook a systematic genetic and biochemical study of Drosophila pex16 and pex2 mutants. These mutants are short-lived with defects in locomotion and activity. Moreover these mutants exhibit severe morphologic and functional peroxisomal defects. Using metabolomics we uncovered defects in multiple biochemical pathways including defects outside the canonical specialized lipid pathways performed by peroxisomal enzymes. These included unanticipated changes in metabolites in glycolysis, glycogen metabolism, and the pentose phosphate pathway, carbohydrate metabolic pathways that do not utilize known peroxisomal enzymes. In addition, mutant flies are starvation sensitive and are very sensitive to glucose deprivation exhibiting dramatic shortening of lifespan and hyperactivity on low-sugar food. We use bioinformatic transcriptional profiling to examine gene co-regulation between peroxisomal genes and other metabolic pathways and we observe that the expression of peroxisomal and carbohydrate pathway genes in flies and mouse are tightly correlated. Indeed key steps in carbohydrate metabolism were found to be strongly co-regulated with peroxisomal genes in flies and mice. Moreover mice lacking peroxisomes exhibit defective carbohydrate metabolism at the same key steps in carbohydrate breakdown. Our data indicate an unexpected link between these two metabolic processes and suggest metabolism of carbohydrates could be a new therapeutic target for patients with PBD.


Subject(s)
Carbohydrate Metabolism , Peroxisomal Disorders/genetics , Peroxisomes/metabolism , Animals , Drosophila/genetics , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Glucose/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mutation , Peroxisomal Biogenesis Factor 2 , Peroxisomes/genetics , Transcriptome
2.
Biophys J ; 112(8): 1663-1672, 2017 Apr 25.
Article in English | MEDLINE | ID: mdl-28445757

ABSTRACT

The bacterial membrane represents an attractive target for the design of new antibiotics to combat widespread bacterial resistance. Understanding how antimicrobial peptides (AMPs) and other membrane-active agents attack membranes could facilitate the design of new, effective antimicrobials. Despite intense study of AMPs on model membranes, we do not know how well the mechanism of attack translates to real biological membranes. To that end, we have characterized the attack of AMPs on Escherichia coli cytoplasmic membranes and directly compared this action to model membranes. AMPs induce membrane permeability in E. coli spheroplasts or giant unilamellar vesicles (GUVs) under well-defined concentrations of AMPs and fluorescent molecules. The action of AMPs on spheroplasts is unique in producing an intracellular fluorescence intensity time curve that increases in a sigmoidal fashion to a steady state. This regular pattern is reproducible by melittin, LL37, and alamethicin but not by CCCP or daptomycin, agents known to cause ion leakage. Remarkably, a similar pattern was also reproduced in GUVs. Indeed the steady-state membrane permeability induced by AMPs is quantitatively the same in spheroplasts and GUVs. There are, however, interesting dissimilarities in details that reveal differences between bacterial and lipid membranes. Spheroplast membranes are permeabilized by a wide range of AMP concentrations to the same steady-state membrane permeability. In contrast, only a narrow range of AMP concentrations permeabilized GUVs to a steady state. Tension in GUVs also influences the action of AMPs, whereas the spheroplast membranes are tensionless. Despite these differences, our results provide a strong support for using model membranes to study the molecular interactions of AMPs with bacterial membranes. As far as we know, this is the first time the actions of AMPs, on bacterial membranes and on model membranes, have been directly and quantitatively compared.


Subject(s)
Alamethicin/metabolism , Antimicrobial Cationic Peptides/metabolism , Cell Membrane/metabolism , Escherichia coli/metabolism , Melitten/metabolism , Anti-Infective Agents/pharmacology , Cell Membrane/drug effects , Cell Membrane Permeability , Escherichia coli/drug effects , Fluorescent Dyes , Lipid Bilayers/chemistry , Microscopy, Confocal , Spheroplasts/metabolism , Unilamellar Liposomes/metabolism , Cathelicidins
3.
J Biol Chem ; 290(8): 4772-4783, 2015 Feb 20.
Article in English | MEDLINE | ID: mdl-25555915

ABSTRACT

Fusion of tubular membranes is required to form three-way junctions found in reticular subdomains of the endoplasmic reticulum. The large GTPase Atlastin has recently been shown to drive endoplasmic reticulum membrane fusion and three-way junction formation. The mechanism of Atlastin-mediated membrane fusion is distinct from SNARE-mediated membrane fusion, and many details remain unclear. In particular, the role of the amphipathic C-terminal tail of Atlastin is still unknown. We found that a peptide corresponding to the Atlastin C-terminal tail binds to membranes as a parallel α helix, induces bilayer thinning, and increases acyl chain disorder. The function of the C-terminal tail is conserved in human Atlastin. Mutations in the C-terminal tail decrease fusion activity in vitro, but not GTPase activity, and impair Atlastin function in vivo. In the context of unstable lipid bilayers, the requirement for the C-terminal tail is abrogated. These data suggest that the C-terminal tail of Atlastin locally destabilizes bilayers to facilitate membrane fusion.


Subject(s)
Drosophila Proteins/chemistry , Endoplasmic Reticulum/chemistry , GTP Phosphohydrolases/chemistry , GTP-Binding Proteins/chemistry , Lipid Bilayers/chemistry , Membrane Fusion , Membrane Proteins/chemistry , Animals , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Humans , Lipid Bilayers/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Protein Structure, Secondary
4.
PLoS One ; 9(6): e100213, 2014.
Article in English | MEDLINE | ID: mdl-24945818

ABSTRACT

Peroxisomes are ubiquitous organelles that perform lipid and reactive oxygen species metabolism. Defects in peroxisome biogenesis cause peroxisome biogenesis disorders (PBDs). The most severe PBD, Zellweger syndrome, is characterized in part by neuronal dysfunction, craniofacial malformations, and low muscle tone (hypotonia). These devastating diseases lack effective therapies and the development of animal models may reveal new drug targets. We have generated Drosophila mutants with impaired peroxisome biogenesis by disrupting the early peroxin gene pex3, which participates in budding of pre-peroxisomes from the ER and peroxisomal membrane protein localization. pex3 deletion mutants lack detectible peroxisomes and die before or during pupariation. At earlier stages of development, larvae lacking Pex3 display reduced size and impaired lipid metabolism. Selective loss of peroxisomes in muscles impairs muscle function and results in flightless animals. Although, hypotonia in PBD patients is thought to be a secondary effect of neuronal dysfunction, our results suggest that peroxisome loss directly affects muscle physiology, possibly by disrupting energy metabolism. Understanding the role of peroxisomes in Drosophila physiology, specifically in muscle cells may reveal novel aspects of PBD etiology.


Subject(s)
Drosophila melanogaster/metabolism , Lipid Metabolism , Muscles/physiology , Peroxisomes/metabolism , Animals , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Gene Knockdown Techniques , Mutation/genetics , Organ Specificity , Pupa/physiology , RNA Interference
5.
Traffic ; 13(10): 1378-92, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22758915

ABSTRACT

Peroxisomes are ubiquitous organelles housing a variety of essential biochemical pathways. Peroxisome dysfunction causes a spectrum of human diseases known as peroxisome biogenesis disorders (PBD). Although much is known regarding the mechanism of peroxisome biogenesis, it is still unclear how peroxisome dysfunction leads to the disease state. Several recent studies have shown that mutations in Drosophila peroxin genes cause phenotypes similar to those seen in humans with PBDs suggesting that Drosophila might be a useful system to model PBDs. We have analyzed the proteome of Drosophila to identify the proteins involved in peroxisomal biogenesis and homeostasis as well as metabolic enzymes that function within the organelle. The subcellular localization of five of these predicted peroxisomal proteins was confirmed. Similar to Caenorhabditis elegans, Drosophila appears to only utilize the peroxisome targeting signal type 1 system for matrix protein import. This work will further our understanding of peroxisomes in Drosophila and add to the usefulness of this emerging model system.


Subject(s)
Drosophila Proteins/analysis , Drosophila melanogaster/metabolism , Peroxisomes/metabolism , Animals , Drosophila Proteins/metabolism , Drosophila melanogaster/chemistry , Drosophila melanogaster/enzymology , Peroxisomes/chemistry , Peroxisomes/enzymology , Protein Transport , Proteome/analysis
6.
Nature ; 460(7258): 978-83, 2009 Aug 20.
Article in English | MEDLINE | ID: mdl-19633650

ABSTRACT

Establishment and maintenance of proper architecture is essential for endoplasmic reticulum (ER) function. Homotypic membrane fusion is required for ER biogenesis and maintenance, and has been shown to depend on GTP hydrolysis. Here we demonstrate that Drosophila Atlastin--the fly homologue of the mammalian GTPase atlastin 1 involved in hereditary spastic paraplegia--localizes on ER membranes and that its loss causes ER fragmentation. Drosophila Atlastin embedded in distinct membranes has the ability to form trans-oligomeric complexes and its overexpression induces enlargement of ER profiles, consistent with excessive fusion of ER membranes. In vitro experiments confirm that Atlastin autonomously drives membrane fusion in a GTP-dependent fashion. In contrast, GTPase-deficient Atlastin is inactive, unable to form trans-oligomeric complexes owing to failure to self-associate, and incapable of promoting fusion in vitro. These results demonstrate that Atlastin mediates membrane tethering and fusion and strongly suggest that it is the GTPase activity that is required for ER homotypic fusion.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/cytology , Drosophila melanogaster/enzymology , Dynamins , Endoplasmic Reticulum/metabolism , GTP Phosphohydrolases/metabolism , Membrane Fusion , Animals , Drosophila Proteins/deficiency , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Endoplasmic Reticulum/pathology , GTP Phosphohydrolases/deficiency , GTP Phosphohydrolases/genetics , HeLa Cells , Humans , Protein Transport , Proteolipids/metabolism
7.
Proc Natl Acad Sci U S A ; 104(3): 1021-6, 2007 Jan 16.
Article in English | MEDLINE | ID: mdl-17204561

ABSTRACT

Pyrrolysine has entered natural genetic codes by the translation of UAG, a canonical stop codon. UAG translation as pyrrolysine requires the pylT gene product, an amber-decoding tRNA(Pyl) that is aminoacylated with pyrrolysine by the pyrrolysyl-tRNA synthetase produced from the pylS gene. The pylTS genes form a gene cluster with pylBCD, whose functions have not been investigated. The pylTSBCD gene order is maintained not only in methanogenic Archaea but also in a distantly related Gram-positive Bacterium, indicating past horizontal gene transfer of all five genes. Here we show that lateral transfer of pylTSBCD introduces biosynthesis and genetic encoding of pyrrolysine into a naïve organism. PylS-based assays demonstrated that pyrrolysine was biosynthesized in Escherichia coli expressing pylBCD from Methanosarcina acetivorans. Production of pyrrolysine did not require tRNA(Pyl) or PylS. However, when pylTSBCD were coexpressed with mtmB1, encoding the methanogen monomethylamine methyltransferase, UAG was translated as pyrrolysine to produce recombinant monomethylamine methyltransferase. Expression of pylTSBCD also suppressed an amber codon introduced into the E. coli uidA gene. Strains lacking one of the pylBCD genes did not produce pyrrolysine or translate UAG as pyrrolysine. These results indicated that pylBCD gene products biosynthesize pyrrolysine using metabolites common to Bacteria and Archaea and, furthermore, that the pyl gene cluster represents a "genetic code expansion cassette," previously unprecedented in natural organisms, whose transfer allows an existing codon to be translated as a novel endogenously synthesized free amino acid. Analogous cassettes may have served similar functions for other amino acids during the evolutionary expansion of the canonical genetic code.


Subject(s)
Genetic Code/genetics , Lysine/analogs & derivatives , Amino Acid Sequence , Codon, Terminator/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression/genetics , Genetic Vectors/genetics , Lysine/biosynthesis , Lysine/genetics , Mass Spectrometry , Methanosarcina/chemistry , Methanosarcina/genetics , Methanosarcina/metabolism , Methyltransferases/chemistry , Methyltransferases/genetics , Methyltransferases/metabolism , Molecular Sequence Data , Protein Biosynthesis/genetics , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...