Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 12(2)2020 Feb 07.
Article in English | MEDLINE | ID: mdl-32046003

ABSTRACT

:Linear and nonlinear rheological properties of model comb polystyrenes (PS) with loosely to densely grafted architectures were measured under small and medium amplitude oscillatory shear (SAOS and MAOS) flow. This comb PS set had the same length of backbone and branches but varied in the number of branches from 3 to 120 branches. Linear viscoelastic properties of the comb PS were compared with the hierarchical model predictions. The model underpredicted zero-shear viscosity and backbone plateau modulus of densely branched comb with 60 or 120 branches because the model does not include the effect of side chain crowding. First- and third-harmonic nonlinearities reflected the hierarchy in the relaxation motion of comb structures. Notably, the low-frequency plateau values of first-harmonic MAOS moduli scaled with Mw-2 (total molecular weight), reflecting dynamic tube dilution (DTD) by relaxed branches. Relative intrinsic nonlinearity Q0 exhibited the difference between comb and bottlebrush via no low-frequency Q0 peak of bottlebrush corresponding to backbone relaxation, which is probably related to the stretched backbone conformation in bottlebrush.

2.
Adv Mater ; 31(26): e1806484, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30790370

ABSTRACT

Comb and bottlebrush polymers present a wide range of rheological and mechanical properties that can be controlled through their molecular characteristics, such as the backbone and side chain lengths as well as the number of branches per molecule or the grafting density. This review investigates the impact of these characteristics specifically on the zero shear viscosity, strain hardening behavior, and plateau shear modulus. It is shown that for a comb polymer with an entangled backbone and entangled side chains, a maximum in the strain hardening factor and minimum in the zero shear viscosity η0 can be achieved through selection of an optimum number of branches q. Bottlebrush polymers with flexible filaments and extremely low plateau shear moduli relative to linear polymers open the door for a new class of solvent-free supersoft elastomers, where their network modulus can be controlled through both the degree of polymerization between crosslinks, nx , and the length of the side chains, nsc , with G B B 0 ≈ ρ k T n x - 1 ( n s c + 1 ) - 1 .

3.
Macromol Rapid Commun ; 35(3): 317-22, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24356926

ABSTRACT

The combination of the Passerini reaction and olefin cross-metathesis is shown to be a very useful approach for the divergent synthesis of dendrimers. Castor oil-derived platform chemicals, such as 10-undecenoic acid and 10-undecenal, are reacted in a Passerini reaction with an unsaturated isocyanide to obtain a core unit having three terminal double bonds. Subsequent olefin cross-metathesis with tert-butyl acrylate, followed by hydrogenation of the double bonds and hydrolysis of the tert-butyl ester, leads to an active core unit bearing three carboxylic acid groups as reactive sites. Iterative steps of the Passerini reaction with 10-undecenal and 10-isocyanodec-1-ene for branching, and olefin cross-metathesis with tert-butyl acrylate, followed by hydrogenation and hydrolysis allow the synthesis of a third-generation dendrimer. All steps of the synthesis are carefully characterized by NMR, GPC, MS, and IR.


Subject(s)
Alkenes/chemistry , Dendrimers/chemical synthesis , Acrylates/chemistry , Catalysis , Chemistry Techniques, Synthetic , Hydrogenation
SELECTION OF CITATIONS
SEARCH DETAIL
...