Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Metabolism ; 150: 155696, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37804881

ABSTRACT

BACKGROUND: Growing evidence demonstrates the role of the striatal dopamine system in the regulation of glucose metabolism. Treatment with dopamine antagonists is associated with insulin resistance and hyperglycemia, while dopamine agonists are used in treatment of type 2 diabetes. The mechanism underlying striatal dopamine effects in glucose metabolism, however is not fully understood. Here, we provide mechanistic insights into the role of nucleus accumbens shell (sNAc) dopaminergic signaling in systemic glucose metabolism. METHODS: Endogenous glucose production (EGP), blood glucose and mRNA expression in the lateral hypothalamic area (LHA) in male Wistar rats were measured following infusion of vanoxerine (VNX, dopamine reuptake inhibitor) in the sNAc. Thereafter, we analyzed projections from sNAc Drd1-expressing neurons to LHA using D1-Cre male Long-Evans rats, Cre-dependent viral tracers and fluorescence immunohistochemistry. Brain slice electrophysiology in adult mice was used to study spontaneous excitatory postsynaptic currents of sNAc Drd1-expressing neurons following VNX application. Finally, we assessed whether GABAergic LHA activity and hepatic vagal innervation were required for the effect of sNAc-VNX on glucose metabolism by combining infusion of sNAc-VNX with LHA-bicuculline, performing vagal recordings and combining infusion of sNAc-VNX with hepatic vagal denervation. RESULTS: VNX infusion in the sNAc strongly decreased endogenous glucose production, prevented glucose increases over time, reduced Slc17A6 and Hcrt mRNA in LHA, and increased vagal activity. Furthermore, sNAc Drd1-expressing neurons increased spontaneous firing following VNX application, and viral tracing of sNAc Drd1-expressing neurons revealed direct projections to LHA with on average 67 % of orexin cells directly targeted by sNAc Drd1-expressing neurons. Importantly, the sNAc-VNX-induced effect on glucose metabolism was dependent on GABAergic signaling in the LHA and on intact hepatic vagal innervation. CONCLUSIONS: We show that sNAc dopaminergic signaling modulates hepatic glucose metabolism through GABAergic inputs to glutamatergic LHA cells and hepatic vagal innervation. This demonstrates that striatal control of glucose metabolism involves a dopaminergic sNAc-LHA-liver axis and provides a potential explanation for the effects of dopamine agonists and antagonists on glucose metabolism.


Subject(s)
Diabetes Mellitus, Type 2 , Hypothalamic Area, Lateral , Rats , Male , Mice , Animals , Hypothalamic Area, Lateral/metabolism , Nucleus Accumbens/metabolism , Dopamine/metabolism , Rodentia/metabolism , Dopamine Agonists/metabolism , Dopamine Agonists/pharmacology , Diabetes Mellitus, Type 2/metabolism , Rats, Wistar , Rats, Long-Evans , Glucose/metabolism , Liver/metabolism , RNA, Messenger/metabolism
2.
J Mater Chem B ; 10(45): 9446-9456, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36345931

ABSTRACT

A family of amphiphilic diblock copolymers containing a hydrophobic polyisobutylene (PIB, Mn = 1000 g mol-1) segment and a hydrophilic block with sugar pendants has been synthesized by combining living cationic and reversible addition-fragmentation chain transfer (RAFT) polymerization techniques; to explore their potential in insulin fibrillation inhibition. The glucose content in the hydrophilic segment has been tailor-made from 20 to 57 units to prepare block copolymers. The removal of the acetates from the pendent glucose units resulted in amphiphilic block copolymers that generated micellar aggregates in aqueous media. The treatment of insulin with these block copolymers affected the fibril formation process which was demonstrated using an array of biophysical techniques, namely, thioflavin T (ThT) fluorescence, tyrosine (Tyr) fluorescence, Nile red (NR) fluorescence, isothermal titration calorimetry (ITC), etc. The Tyr fluorescence assay and NR fluorescence study revealed the crucial role of hydrophobic interaction in the inhibition process, whereas ITC measurements confirmed the importance of polar interaction. Thus, the block copolymers exhibit potent inhibition of insulin fibrillation owing to hydrophobic (from PIB segment) and glycosidic cluster effect (from sugar pendant block).


Subject(s)
Insulin , Polymers , Polymers/pharmacology , Polymers/chemistry , Glucose , Sugars
3.
Biol Psychiatry ; 79(11): 887-97, 2016 06 01.
Article in English | MEDLINE | ID: mdl-26281715

ABSTRACT

BACKGROUND: The dopamine D2 receptor (D2R) has received much attention in obesity studies. Data indicate that D2R is reduced in obesity and that the TaqA1 D2R variant may be more prevalent among obese persons. It is often suggested that reduced D2R generates a reward deficiency and altered appetitive motivation that induces compulsive eating and contributes to obesity. Although dopamine is known to regulate physical activity, it is often neglected in these studies, leaving open the question of whether reduced D2R contributes to obesity through alterations in energy expenditure and activity. METHODS: We generated a D2R knockdown (KD) mouse line and assessed both energy expenditure and appetitive motivation under conditions of diet-induced obesity. RESULTS: The KD mice did not gain more weight or show increased appetitive motivation compared with wild-type mice in a standard environment; however, in an enriched environment with voluntary exercise opportunities, KD mice exhibited dramatically lower activity and became more obese than wild-type mice, obtaining no protective benefit from exercise opportunities. CONCLUSIONS: These data suggest the primary contribution of altered D2R signaling to obesity lies in altered energy expenditure rather than the induction of compulsive overeating.


Subject(s)
Feeding Behavior/physiology , Motivation/physiology , Motor Activity/physiology , Obesity/metabolism , Receptors, Dopamine D2/metabolism , Animals , Blood Glucose , Body Weight , Calorimetry, Indirect , Choice Behavior/physiology , Conditioning, Operant/physiology , Disease Models, Animal , Energy Metabolism/physiology , Female , Genetic Predisposition to Disease , Housing, Animal , Male , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Transgenic , Obesity/psychology , Receptors, Dopamine D2/genetics
4.
J Biomed Mater Res A ; 103(12): 3798-806, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26097127

ABSTRACT

Long-term in vitro stability of thermoplastic polyurethanes (TPUs) was studied for up to 52 weeks in phosphate buffer solution at 37, 55, and 80°C. Water uptake, molecular weights, and tensile properties were measured at regular intervals of 4, 8, 16, 32, and 52 weeks. The rate of molecular weight reduction increased with increasing temperature, and after 52 weeks at 80°C, all commercial polycarbonate (Bionate-55D, Quadrathane-80A, and Chronoflex-80A), poly(dimethylsiloxane) (ElastEon-2A) and polyether (Elasthane-55D) TPUs showed significant (43-51%) molecular weight (Mn ) reduction. The polyisobutylene (PIB)-based TPU exhibited a significantly lower decrease in Mn (26%) after 52 weeks at 80°C. For Bionate-55D and ElastEon-2A, at 80°C in dry nitrogen atmosphere substantial thermal degradation was observed, while for the other TPUs the effect of thermal degradation is small. The temperature dependent reduction of molecular weight was interpreted by simple second order kinetics. From the approximately linear Arrhenius plots the activation energies were calculated, which were highest for PIB-PU-020 and lowest for ElastEon-2A. For Elasthane-55D the in vitro molecular weight reduction was compared with that of explanted leads. The molecular weight reduction in vivo was much smaller than that predicted from in vitro data, which may suggest that the in vitro model does not adequately describe the hydrolysis in vivo. In the absence of validation for the other TPUs that in vitro methods closely reproduce in vivo degradation, it is unknown how these results correlate with in vivo performance.


Subject(s)
Biocompatible Materials/chemistry , Polyurethanes/chemistry , Dimethylpolysiloxanes/chemistry , Hydrolysis , Materials Testing , Polycarboxylate Cement/chemistry , Polyenes/chemistry , Polymers/chemistry , Temperature , Tensile Strength , Water/chemistry
5.
ACS Appl Mater Interfaces ; 7(16): 8779-88, 2015 Apr 29.
Article in English | MEDLINE | ID: mdl-25844579

ABSTRACT

This work demonstrates the successful application of dynamic covalent chemistry for the construction of self-healing gels from side-chain primary amine leucine pendant diblock copolymers of polyisobutylene (PIB) ((P(H2N-Leu-HEMA)-b-PIB)) in the presence of PIB based dialdehyde functionalized cross-linker (HOC-PIB-CHO) through imine (-HC═N-) bond formation without aiding any external stimuli. Gels were synthesized in 1,4-dioxane at room temperature at varied wt % of gelator concentration, [H2N]/[CHO] ratios and molecular weight of the block segments. The mechanical property of gels was examined by rheological measurements. We observed higher value of storage modulus (G') than the loss modulus (G″) within the linearity limits of deformation, indicating the rheological behavior in the gel is dominated by an elastic property rather than a viscous property. The G' values significantly depend upon the extent of cross-linking in the gel network. To establish self-healing property of the gels, rheology analysis through step-strain measurements (strain = 0.1 to 200%) at 25 °C was performed. The polymeric gel network shows reversible sol-gel transition for several cycles by adjusting the pH of the medium with the help of hydrochloric acid (HCl) and triethylamine (Et3N) triggers. FT-IR spectroscopy established formation of imine bonds in the gel network and these gels showed poor swelling behavior in various organic solvents because of the small interstitial porosity, confirmed by field emission-scanning electron microscopy (FE-SEM).

6.
ACS Appl Mater Interfaces ; 7(3): 2064-72, 2015 Jan 28.
Article in English | MEDLINE | ID: mdl-25545670

ABSTRACT

Polyisobutylene (PIB)-based polymer networks potentially useful as smart coatings for photovoltaic devices have been developed. Low molecular weight coumarin functional triarm star PIB was synthesized via a single step SN2 reaction of bromoallyl functional triarm star PIB with 4-methylumbelliferone or umbelliferone in the presence of sodium hydride. Quantitative end functionality was confirmed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. UVA (λmax = 365 nm) induced reversible photodimerization of the coumarin moieties resulted in cross-linked elastomeric films exhibiting self-healing behavior. The extent of photodimerization/photoscission was monitored by UV-vis spectroscopy. The low oxygen (1.9 × 10(-16) mol m m(-2) s(-1) Pa(-1)) and moisture (46 × 10(-16) mol m m(-2) s(-1) Pa(-1)) permeability of the cross-linked polymer films suggest excellent barrier properties of the cross-linked polymer films. The self-healing process was studied by atomic force microscopy (AFM). For this, mechanical cuts were introduced in the cross-linked PIB films through micromachining with an AFM tip and the rate of healing induced by UV, sunlight, or both was followed by taking AFM images of the film at different time intervals during the repair process.

7.
J Chromatogr A ; 1376: 98-104, 2015 Jan 09.
Article in English | MEDLINE | ID: mdl-25533396

ABSTRACT

The chemical homogeneity of telechelic polyisobutylene diol (PIB-diol), prepared by hydroboration-oxidation of allyl telechelic PIB obtained by reacting living PIB with allyltrimethylsilane, was investigated by liquid chromatography at critical conditions (LCCC) and HPLC coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). A normal phase gradient HPLC method was developed that was able to separate the as-synthesized PIB-diol into three components; PIB-diol, PIB-monool and PIB without any OH functionality. These were analyzed by MALDI-TOF MS, which suggested that the reaction of living PIB with allyltrimethylsilane was incomplete. LCCC using refractive index (RI) detector as a concentration detector allowed separation and quantification of PIB species according to their chemical heterogeneity (PIB-diol=95.3%, PIB-monool=3.3%, non-functional PIB=1.4%). The calculated number average functionality (Fn) of PIB-diol=1.94 suggests high quality of PIB-diol suitable for high molecular weight polyurethane synthesis.


Subject(s)
Polymers/chemistry , Chromatography, High Pressure Liquid/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
8.
Langmuir ; 27(23): 14160-8, 2011 Dec 06.
Article in English | MEDLINE | ID: mdl-22023013

ABSTRACT

The surface properties and biocompatibility of a class of thermoplastic polyurethanes (TPUs) with applications in blood-contacting medical devices have been studied. Thin films of commercial TPUs and novel polyisobutylene (PIB)-poly(tetramethylene oxide) (PTMO) TPUs were characterized by contact angle measurements, X-ray photoelectron spectroscopy, and atomic force microscopy (AFM) imaging. PIB-PTMO TPU surfaces have significantly higher C/N ratios and lower amounts of oxygen than the theoretical bulk composition, which is attributed to surface enrichment of PIB. Greater differences in the C/N ratios were observed with the softer compositions due to their higher relative amounts of PIB. The contact angles were higher on PIB-PTMO TPUs than on commercial polyether TPUs, indicating lower surface energy. AFM imaging showed phase separation and increasing domain sizes with increasing hard segment content. The biocompatibility was investigated by quantifying the adsorption of fouling and passivating proteins, fibrinogen (Fg) and human serum albumin (HSA) respectively, onto thin TPU films spin coated onto the electrode of a quartz crystal microbalance with dissipation monitoring (QCM-D). Competitive adsorption experiments were performed with a mixture of Fg and albumin in physiological ratio followed by binding of GPIIb-IIIa, the platelet receptor ligand that selectively binds to Fg. The QCM-D results indicate similar adsorbed amounts of both Fg and HSA on PIB-PTMO TPUs and commercial TPUs. The strength of the protein interactions with the various TPU surfaces measured with AFM (colloidal probe) was similar among the various TPUs. These results suggest excellent biocompatibility of these novel PIB-PTMO TPUs, similar to that of polyether TPUs.


Subject(s)
Fibrinogen/chemistry , Polyenes/chemistry , Polymers/chemistry , Polyurethanes/chemistry , Serum Albumin/chemistry , Temperature , Adsorption , Humans , Particle Size , Surface Properties
9.
J Biomed Mater Res A ; 95(3): 774-82, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-20725977

ABSTRACT

Long term in vitro biostability of thermoplastic polyurethanes (TPUs) containing mixed polyisobutylene (PIB)/poly(tetramethylene oxide) (PTMO) soft segment was studied under accelerated conditions in 20% H(2)O(2) solution containing 0.1M CoCl(2) at 50 °C to predict resistance to metal ion oxidative degradation (MIO) in vivo. The PIB-based TPUs showed significant oxidative stability as compared to the commercial controls Pellethane 2363-55D and 2363-80A. After 12 weeks in vitro the PIB-PTMO TPUs with 10-20% PTMO in the soft segment showed 6-10% weight loss whereas the Pellethane TPUs degraded completely in about 9 weeks. Attenuated total reflectance Fourier transform infrared spectroscopy confirmed the degradation of Pellethane samples via MIO by the loss of the ∼1110 cm(-1) aliphatic C-O-C stretching peak height attributed to chain scission, and the appearance of a new peak at ∼1174 cm(-1) attributed to crosslinking. No such changes were apparent in the spectra of the PIB-based TPUs. The PIB-based TPUs exhibited 10-30% drop in tensile strength compared to 100% for the Pellethane TPUs after 12 weeks. The molecular weight of the PIB-based TPUs decreased slightly (10-15%) at 12 weeks. The Pellethane TPUs showed a dramatic decrease in M(n) and an increase in low molecular weight degradation product. Scanning electron microscopy (SEM) showed severe cracking in the Pellethane samples after 2 weeks, whereas the PIB-based TPUs exhibited a continuous surface morphology. The weight loss, tensile, and SEM data correlate well with each other and indicate excellent biostability of these materials.


Subject(s)
Polyenes , Polymers , Polyurethanes , Biocompatible Materials/chemistry , Biocompatible Materials/metabolism , Cobalt/chemistry , Cobalt/metabolism , Materials Testing , Microscopy, Electron, Scanning , Oxidation-Reduction , Polyenes/chemistry , Polyenes/metabolism , Polymers/chemistry , Polymers/metabolism , Polyurethanes/chemistry , Polyurethanes/metabolism , Spectroscopy, Fourier Transform Infrared , Tensile Strength
10.
J Biomed Mater Res A ; 92(2): 773-82, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19274717

ABSTRACT

The TAXUS Express 2 Paclitaxel Eluting Coronary Stent System employs a coating consisting of the thermoplastic elastomer, poly(styrene-b-isobutylene-b-styrene; SIBS), selected for its drug-eluting characteristics, vascular compatibility, mechanical properties, and biostability. This study was conducted to evaluate the impact of different SIBS (17-51 mole % styrene) compositions on mechanical properties, chemical stability, and vascular compatibility. Mechanical property (stress-strain measurements) and stability studies were conducted on polymer films with five different styrene contents (17, 24, 32, 39, and 51 mole %). The ultimate tensile strength did not change significantly with composition, but the elongation at break decreased with increased styrene content. A pulsatile fatigue test further confirmed the mechanical stability of SIBS up to 39 mole % styrene. The vascular compatibility of five different SIBS compositions was assessed using SIBS-only coated stents, in the coronary and carotid arteries in a porcine model study. The stability of the vessel wall, rate/degree of endothelialization, inflammation, and thrombus at timepoints from 30 to 180 days were evaluated. The results confirm vascular compatibility over the range of 17-51 mole % styrene.


Subject(s)
Biocompatible Materials , Stents , Styrenes/chemistry , Angiography , Animals , Carotid Arteries/anatomy & histology , Coronary Circulation/physiology , Hydrolysis , Magnetic Resonance Spectroscopy , Materials Testing , Microscopy, Electron, Scanning , Stress, Mechanical , Swine , Tensile Strength
11.
Langmuir ; 25(11): 6319-27, 2009 Jun 02.
Article in English | MEDLINE | ID: mdl-19334689

ABSTRACT

Peptide surface modification of poly[(methyl methacrylate-co-hydroxyethyl methacrylate)-b-isobutylene-b-(methyl methacrylate-co-hydroxyethyl methacrylate)] P(MMA-co-HEMA)-b-PIB-b-P(MMA-co-HEMA) triblock copolymers with different HEMA/MMA ratios has been accomplished using an efficient synthetic procedure. The triblock copolymers were reacted with 4-fluorobenzenesulfonyl chloride (fosyl chloride) in pyridine to obtain the activated polymers [poly{(methyl methacrylate-co-fosyloxyethyl methacrylate)-b-isobutylene-b-(methyl methacrylate-co-fosyloxyethyl methacrylate)}] P(MMA-co-FEMA)-b-PIB-b-P(MMA-co-FEMA), with an activating efficiency of 80-90%. The resulting polymers were soluble in chloroform, and their solutions were used to coat thin uniform films with a predetermined thickness on smooth steel surfaces. The presence of reactive activating groups on the film surface was confirmed by X-ray photoelectron spectroscopy (XPS), dye labeling, and confocal laser scanning microscopic studies. Activation of the triblock copolymer films was also achieved under heterogeneous conditions in polar (acetonitrile) and nonpolar (hexanes) media. The extent of activation was controlled by varying the dipping time and polarity of the medium. Peptide attachment was accomplished by immersing the coated steel strips into aqueous buffer solution of Gly-Gly or GYIGSR. XPS and solubility studies revealed successful attachment of peptides to the polymer surface. Virtually all remaining activating groups were successfully replaced in the subsequent step by a treatment with Tris(hydroxymethyl)amino methane in a buffered methanol/water mixture.


Subject(s)
Methacrylates/chemistry , Methylmethacrylate/chemistry , Peptides/chemistry , Polymethyl Methacrylate/chemistry , Biocompatible Materials/chemistry , Chloroform/chemistry , Fluorobenzenes/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure , Polymers/chemistry , Pyridines/chemistry , Surface Properties
12.
Biomacromolecules ; 7(11): 2997-3007, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17096524

ABSTRACT

Polyisobutylene (PIB)-based block copolymers have attracted significant interest as biomaterials. Poly(styrene-b-isobutylene-b-styrene) (SIBS) has been shown to be vascularly compatible and, when loaded with paclitaxel (PTx) and coated on a coronary stent, has the ability to deliver the drug directly to arterial walls. Modulation of drug release from this polymer has been achieved by varying the drug/polymer ratio, by blending SIBS with other polymers, and by derivatizing the styrene end blocks to vary the hydrophilicity of the copolymer. In this paper, results are reported on the synthesis, physical properties, and drug elution profile of PIB-based block copolymers containing methacrylate end blocks. The preparation of PIB-poly(alkyl methacrylate) block copolymers has been accomplished by a new synthetic methodology using living cationic and anionic polymerization techniques. 1,1-Diphenylethylene end-functionalized PIB was prepared from the reaction of living PIB and 1,4-bis(1-phenylethenyl)benzene, followed by the methylation of the resulting diphenyl carbenium ion with dimethylzinc (Zn(CH(3))(2)). PIB-DPE was quantitatively metalated with n-butyllithium in tetrahydrofuran, and the resulting macroinitiator could initiate the polymerization of methacrylate monomers, yielding block copolymers with high blocking efficiency. Poly(methyl methacrylate-b-isobutylene-b-methyl methacrylate) (PMMA-b-PIB-b-PMMA) and poly(hydroxyethyl methacrylate-b-isobutylene-b-hydroxyethyl methacrylate) (PHEMA-b-PIB-b-PHEMA) triblock copolymers were synthesized and used as drug delivery matrixes for coatings on coronary stents. The PMMA-b-PIB-b-PMMA/PTx system displayed zero-order drug release, while stents coated with PHEMA-b-PIB-b-PHEMA/PTx formulations exhibited a significant initial burst release of PTx. Physical characterization using atomic force microscopy and differential scanning calorimetry of the formulated PMMA-b-PIB-b-PMMA coating matrix indicated the partial miscibility of PTx with the PMMA microphase of the matrix.


Subject(s)
Drug Carriers , Polyenes/chemical synthesis , Polymers/chemical synthesis , Calorimetry, Differential Scanning , Magnetic Resonance Spectroscopy , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Polyenes/chemistry , Polymers/chemistry , Spectrophotometry, Ultraviolet , Stents
13.
Biomacromolecules ; 6(5): 2570-82, 2005.
Article in English | MEDLINE | ID: mdl-16153094

ABSTRACT

A poly(styrene-b-isobutylene-b-styrene) (SIBS) triblock polymer is employed as the polymer drug carrier for the TAXUS Express2 Paclitaxel-Eluting Coronary Stent system (Boston Scientific Corp.). It has been shown that the release of paclitaxel (PTx) from SIBS can be modulated by modification of either drug-loading ratio or altering the triblock morphology by blending. In the present work, results toward achieving release modulation of PTx by chemical modification of the styrenic portion (using hydroxystyrene or its acetylated version) of the SIBS polymer system are reported. The synthesis of the precursor poly[(p-tert-butyldimethylsilyloxystyrene)]-b-isobutylene-b-[(p-tert-butyldimethylsilyloxystyrene] triblock copolymers was accomplished by living sequential block copolymerization of isobutylene (IB) and p-(tert-butyldimethylsiloxy)styrene (TBDMS) utilizing the capping-tuning technique in a one-pot procedure in methylcyclohexane/CH3Cl at -80 degrees C. This procedure involved the living cationic polymerization of IB with the 5-tert-butyl-1,3-bis(1-chloro-1-methylethyl)benzene/TiCl4 initiating system and capping of living difunctional polyisobutylene (PIB) chain ends with 1,1-ditolylethylene (DTE) followed by addition of titanium(IV) isopropoxide (Ti(OIp)4) to lower the Lewis acidity before the introduction of TBDMS. Deprotection of the product with tetrabutylammonium fluoride yielded poly(hydroxystyrene-b-isobutylene-b-hydroxystyrene), which was quantitatively acetylated to obtain the acetylated derivative. The hydroxystyrene and acetoxystyrene triblock copolymers have acceptable mechanical properties for use as drug delivery coatings for coronary stent applications. It was concluded that the hydrophilic nature of the endblocks and polarity effects on the drug/polymer miscibility lead to enhanced release of PTx from these polymers. The drug-polymer miscibility was confirmed by differential scanning calorimetry and atomic force microscopy evaluations.


Subject(s)
Antineoplastic Agents, Phytogenic/administration & dosage , Biocompatible Materials/chemistry , Paclitaxel/administration & dosage , Siloxanes/chemistry , Styrenes/chemistry , Absorption , Antineoplastic Agents, Phytogenic/chemistry , Biopolymers/chemistry , Calorimetry, Differential Scanning , Cations , Chromatography, High Pressure Liquid , Cyclohexanes/chemistry , Drug Delivery Systems , Ethylenes/chemistry , Hydrolysis , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Models, Chemical , Molecular Weight , Organometallic Compounds , Paclitaxel/chemistry , Polymers/chemistry , Solvents , Stents , Styrene/chemistry , Temperature , Time Factors , Titanium/chemistry
14.
J Org Chem ; 69(2): 536-42, 2004 Jan 23.
Article in English | MEDLINE | ID: mdl-14725470

ABSTRACT

By analogy with 2,6-di-tert-butylpyridine and its 4-methyl-substituted derivatives, which are nonnucleophilic bases, 4-ethyl-2,6-diisopropyl-3,5-dimethylpyridine (4) is also such a base. The isopropyl groups (Janus-like groups) are forced by the neighboring methyl groups to turn their "tert-butyl-analogue face" toward the heteroatom, thereby protecting it sterically against electrophilic attack. The synthesis proceeds in two stages via the corresponding pyrylium salt 3 that is obtained by alkene diacylation. X-ray data for 4, its picrate, and the hexafluorophosphate of 3 confirm that the ground-state conformation agrees with the Janus effect prediction. The chemical behavior of 4 indicates that it is indeed a weak nucleophilic base, which is able to substitute the nonnucleophilic bases in organic syntheses. The compound 3 reacts at normal pressure with methylamine or ethylamine, forming N-alkylpyridinium salts. The cationic polymerization of isobutene in the presence of 4 was also investigated.

SELECTION OF CITATIONS
SEARCH DETAIL
...