Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 17(17): 11252-9, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25835336

ABSTRACT

Two organic polymers containing alternating electron donating triarylamine and electron accepting thiazolo[5,4-d]thiazole (TzTz) moieties have been synthesized and their redox states investigated. When donor and acceptor units are proximal (polymer )1, electron density is delocalized, leading to a small electrical and optical band gap; these are larger with the inclusion of an adjoining alkynyl-phenyl bridge (polymer 2), where electron density is more localized due to the rotation of the monomer units. As a result, 1 and 2 display different optical and fluorescence properties in their neutral states. Upon chemical and electrochemical redox reactions, radicals form in both 1 and 2, yielding magnetic materials that display temperature-independent paramagnetism, attributable to delocalization of radical spins along the polymeric backbones. The ability to convert between diamagnetic and paramagnetic states upon chemical oxidation and/or reduction allows for the materials to display switchable magnetism and fluorescence, imparting multifunctionality to these solid-state purely organic materials.

2.
Chemistry ; 20(52): 17597-605, 2014 Dec 22.
Article in English | MEDLINE | ID: mdl-25346539

ABSTRACT

A ligand containing the thiazolo[5,4-d]thiazole (TzTz) core (acceptor) with terminal triarylamine moieties (donors), N,N'-(thiazolo[5,4-d]thiazole-2,5-diylbis(4,1-phenylene))bis(N-(pyridine-4-yl)pyridin-4-amine (1), was designed as a donor-acceptor system for incorporation into electronically active metal-organic frameworks (MOFs). The capacity for the ligand to undergo multiple sequential oxidation and reduction processes was examined using UV/Vis-near-infrared spectroelectrochemistry (UV/Vis-NIR SEC) in combination with DFT calculations. The delocalized nature of the highest occupied molecular orbital (HOMO) was found to inhibit charge-transfer interactions between the terminal triarylamine moieties upon oxidation, whereas radical species localized on the TzTz core were formed upon reduction. Conversion of 1 to diamagnetic 2+ and 4+ species resulted in marked changes in the emission spectra. Incorporation of this highly delocalized multi-electron donor-acceptor ligand into a new two-dimensional MOF, [Zn(NO3 )2 (1)] (2), resulted in an inhibition of the oxidation processes, but retention of the reduction capability of 1. Changes in the electrochemistry of 1 upon integration into 2 are broadly consistent with the geometric and electronic constraints enforced by ligation.

3.
Chem Commun (Camb) ; 50(84): 12772-4, 2014 Oct 28.
Article in English | MEDLINE | ID: mdl-25208497

ABSTRACT

The metalloligand [Ni(pedt)2](-) (pedt = 1-(pyridine-4-yl)ethylene-1,2-dithiolate) has been incorporated into two multi-dimensional structures for the first time. These coordination frameworks represent highly unusual interpenetration isomers and exhibit solid state redox and optical properties that reflect the electronically delocalised nature of the metalloligand.

4.
Inorg Chem ; 52(24): 14246-52, 2013 Dec 16.
Article in English | MEDLINE | ID: mdl-24283401

ABSTRACT

The new one-dimensional coordination framework (Zn(DMF)NO3)2(NDC)(DPMNI), where NDC = 2,6-naphthalenedicarboxylate and DPMNI = N,N'-bis(4-pyridylmethyl)-1,4,5,8-naphthalenetetracarboxydiimide, which has been crystallographically characterized, exhibits two redox-accessible states due to the successive reduction of the naphthalenediimide (NDI) ligand core. Solid-state electrochemical and vis-near-IR spectroelectrochemical measurements coupled with density functional theory (DFT) calculations enabled the origins of the optical transitions in the spectra of the monoradical anion and dianion states of the material to be assigned. Electron paramagnetic resonance (EPR) spectroscopy revealed that the paramagnetic radical anion state of the DPMNI core could be accessed upon broad-spectrum white light irradiation of the material, revealing a long-lived excited state, possibly stabilized by charge delocalization which arises from extensive π-π* stacking interactions between alternating NDC and NDI aromatic cores which are separated by a distance of 3.580(2) Å.

5.
Dalton Trans ; 42(27): 9831-9, 2013 Jul 21.
Article in English | MEDLINE | ID: mdl-23519323

ABSTRACT

A new microporous framework, Zn(NDC)(DPMBI) (where NDC = 2,7-naphthalene dicarboxylate and DPMBI = N,N'-di-(4-pyridylmethyl)-1,2,4,5-benzenetetracarboxydiimide), containing the redox-active benzenetetracarboxydiimide (also known as pyromellitic diimide) ligand core has been crystallographically characterised and exhibits a BET surface area of 608.2 ± 0.7 m(2) g(-1). The crystallinity of the material is retained upon chemical reduction with sodium naphthalenide (NaNp), which generates the monoradical anion of the pyromellitic diimide ligand in the framework Zn(NDC)(DPMBI)·Na(x) (where x represents the molar Na(+)/Zn(2+) ratio of 0.109, 0.233, 0.367 and 0.378 from ICP-AES), as determined by EPR, solid state Vis-NIR spectroelectrochemistry and UV-Vis-NIR spectroscopy. The CO2 uptake in the reduced materials relative to the neutral framework is enhanced up to a Na(+)/Zn(2+) molar ratio of 0.367; however, beyond this concentration the surface area and CO2 uptake decrease due to pore obstruction. The CO2 isosteric heat of adsorption (|Q(st)|) and CO2/N2 selectivity (S), obtained from pure gas adsorption isotherms and Ideal Adsorbed Solution Theory (IAST) calculations, are also maximised relative to the neutral framework at this concentration of the alkali metal counter-ion. The observed enhancement in the CO2 uptake, selectivity and isoteric heat of adsorption has been attributed to stronger interactions between CO2 and both the radical DPMBI ligand backbone and the occluded Na(+) ions.


Subject(s)
Carbon Dioxide/chemistry , Organometallic Compounds/chemistry , Adsorption , Models, Molecular , Oxidation-Reduction , Surface Properties , Zinc/chemistry
6.
Dalton Trans ; 41(44): 13626-31, 2012 Nov 28.
Article in English | MEDLINE | ID: mdl-22825721

ABSTRACT

A series of heteroaromatic bridging ligands are employed in the synthesis of a family of paramagnetic, heterometallic ring dimers. The extent of spin propagation between the rings via the organic conduit is investigated through micro-SQUID magnetometry and EPR spectroscopy from which conclusions over the mechanism of spin-communication are drawn.

7.
Chemistry ; 17(50): 14020-30, 2011 Dec 09.
Article in English | MEDLINE | ID: mdl-22083834

ABSTRACT

We present a synthetic, structural, theoretical, and spectroscopic study of a family of heterometallic ring dimers which have the formula [{Cr(7)NiF(3)(Etglu)(O(2)CtBu)(15)}(2)(NLN)], in which Etglu is the pentadeprotonated form of the sugar N-ethyl-D-glucamine, and NLN is an aromatic bridging diimine ligand. By varying NLN we are able to adjust the strength of the interaction between rings with the aim of understanding how to tune our system to achieve weak magnetic communication between the spins, a prerequisite for quantum entanglement. Micro-SQUID and EPR data reveal that the magnetic coupling between rings is partly related to the through-bond distance between the spin centers, but also depends on spin-polarization mechanisms and torsion angles between aromatic rings. Density functional theory (DFT) calculations allow us to make predictions of how such chemically variable parameters could be used to tune very precisely the interaction in such systems. For possible applications in quantum information processing and molecular spintronics, such precise control is essential.

8.
Chem Soc Rev ; 40(6): 3067-75, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21243130

ABSTRACT

Linking polymetallic cages can be a method for creating new structures and new properties. In this tutorial review we use heterometallic anti-ferromagnetically coupled rings (AF-rings) as exemplars for three approaches that can be used to link cage compounds. The first of three routes involves an ion-pair interaction supported by hydrogen-bonding interactions, which allows the synthesis of hybrid rotaxanes among other materials. The second route involves functionalising the exterior of the AF-ring so that it will act as a Lewis base; complexes involving coordination of pyridine to bridging monometallic and dimetallic fragments are discussed. The third route involves creating a vacancy on one site of the AF-ring, and then using the ring as a Lewis acid. Di-imine ligands can then be used to link the AF-rings into dimers. A brief discussion of the physical properties of these systems is also included.

9.
J Am Chem Soc ; 132(43): 15435-44, 2010 Nov 03.
Article in English | MEDLINE | ID: mdl-20929228

ABSTRACT

The synthesis and characterization of a series of hybrid organic-inorganic [2]rotaxanes is described. The ring components are heterometallic octa- ([Cr(7)MF(8)(O(2)C(t)Bu)(16)]; M = Co, Ni, Fe, Mn, Cu, Zn, and Cd) nuclear cages in which the metal centers are bridged by fluoride and pivalate ((t)BuCO(2)(-)) anions; the thread components feature dialkylammonium units that template the formation of the heterometallic rings about the axle to form the interlocked structures in up to 92% yield in conventional macrocyclization or one-pot 'stoppering-plus-macrocyclization' strategies. The presence in the reaction mixture of additives (secondary or tertiary amines or quaternary ammonium salts), and the nature of the stoppering groups (3,5-(t)Bu(2)C(6)H(3)CO(2)- or (t)BuCONH-), can have a significant effect on the rotaxane yield. The X-ray crystal structures of 11 different [2]rotaxanes, a pseudorotaxane, and a two-station molecular shuttle show two distinct types of intercomponent hydrogen bond motifs between the ammonium groups of the organic thread and the fluoride groups of the inorganic ring. The different hydrogen bonding motifs account for the very different rates of dynamics observed for the heterometallic ring on the thread (shuttling slow; rotation fast).

10.
Chem Commun (Camb) ; 46(34): 6258-60, 2010 Sep 14.
Article in English | MEDLINE | ID: mdl-20694231

ABSTRACT

A fluoro-metallocrown selectively binds caesium, extracting it from aqueous solutions into an organic layer; the binding of Cs is monitored by (1)H-NMR of the paramagnetic complexes.


Subject(s)
Cesium/chemistry , Organometallic Compounds/chemical synthesis , Crystallography, X-Ray , Ions/chemistry , Magnetic Resonance Spectroscopy , Models, Molecular , Organometallic Compounds/chemistry
11.
Inorg Chem ; 48(20): 9811-8, 2009 Oct 19.
Article in English | MEDLINE | ID: mdl-19772309

ABSTRACT

(1)H NMR spectra of the paramagnetic heterometallic complexes of general formula [cation][Cr(7)CoF(8)(O(2)C(t)Bu)(16)] have been recorded. The NMR spectra have allowed the investigation of the structure of these complexes in solution. These experiments show that the complexes are stable and maintain the solid state structure in solution, retaining the protonated amine in the cavity of the heterometallic ring.


Subject(s)
Chromium Compounds/chemistry , Cobalt/chemistry , Magnetic Resonance Spectroscopy , Protons , Models, Molecular , Molecular Structure
12.
J Am Chem Soc ; 130(45): 15167-75, 2008 Nov 12.
Article in English | MEDLINE | ID: mdl-18855358

ABSTRACT

Two new bis-bidentate bridging ligands have been prepared, L (naph) and L (anth), which contain two chelating pyrazolyl-pyridine units connected to an aromatic spacer (naphthalene-1,5-diyl and anthracene-9,10-diyl respectively) via methylene connectors. Each of these reacts with transition metal dications having a preference for octahedral coordination geometry to afford {M 8L 12} (16+) cages (for L (anth), M = Cu, Zn; for L (naph), M = Co, Ni, Cd) which have an approximately cubic arrangement of metal ions with a bridging ligand spanning each of the twelve edges, and a large central cavity containing a mixture of anions and/or solvent molecules. The cages based on L (anth) have two cyclic helical {M 4L 4} faces, of opposite chirality, connected by four additional L (anth) ligands as "pillars"; all metal centers have a meridional tris-chelate configuration. In contrast the cages based on L (naph) have (noncrystallographic) S 6 symmetry, with a diagonally opposite pair of corners having a facial tris-chelate configuration with the other six being meridional. An additional significant difference between the two types of structure is that the cubes containing L (anth) do not show significant interligand aromatic stacking interactions. However, in the cages based on L (naph), there are six five-membered stacks of aromatic ligand fragments around the periphery, each based on an alternating array of electron-rich (naphthyl) and electron-deficient (pyrazolyl-pyridine, coordinated to M (2+)) aromatic units. A consequence of this is that the cages {M 8(L (naph)) 12} (16+) retain their structural integrity in polar solvents, in contrast to the cages {M 8(L (anth)) 12} (16+) which dissociate in polar solvents. Consequently, the cages {M 8(L (naph)) 12} (16+) give NMR spectra in agreement with the symmetry observed in the solid state, and their fluorescence spectra (for M = Cd) display (in addition to the normal naphthalene-based pi-pi* fluorescence) a lower-energy exciplex-like emission feature associated with a naphthyl --> pyrazolyl-pyridine charge-transfer excited state arising from the pi-stacking between ligands around the cage periphery.

SELECTION OF CITATIONS
SEARCH DETAIL
...