Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Lipids ; 53(10): 947-960, 2018 10.
Article in English | MEDLINE | ID: mdl-30592062

ABSTRACT

Proteins involved in lipid homeostasis are often regulated through the nuclear peroxisome proliferator-activated receptors (PPAR). PPARα is the target for the fibrate-class of drugs. Fenofibrate has been approved for its lipid-lowering effects in patients with hypercholesterolemia and hypertriglyceridemia. We were interested in understanding the expression of the energy transporters in energy-utilizing tissues like liver, heart, muscle, and adipose tissues in rat with the hypothesis that the change in transporter expression would align with the known lipid-lowering effects of PPARα agonists like fenofibrate. We found that several fatty-acid transporter proteins had significantly altered levels following 8 days of fenofibrate dosing. The mRNA levels of the highly abundant Fatp2 and Fatp5 in rat liver increased approximately twofold and decreased fourfold, respectively. Several fatty-acid-binding proteins and acyl-CoA-binding proteins had a significant increase in mRNA abundance but not the major liver fatty-acid-binding protein, Fabp1. Of particular interest was the increased liver expression of Fabp3 also known as heart-fatty acid binding protein (H-FABP or FABP3). FABP3 has been proposed as a circulating clinical biomarker for cardiomyopathy and muscle toxicity, as well as a preclinical marker for PPARα-induced muscle toxicity. Here, we show that fenofibrate induces liver mRNA levels of Fabp3 ~5000-fold resulting in an approximately 50-fold increase in FABP3 protein levels in the whole liver. This increased liver expression complicates the interpretation and potential use of FABP3 as a specific biomarker for PPARα-induced muscle toxicities.


Subject(s)
Biomarkers, Pharmacological/analysis , Biomarkers, Pharmacological/blood , Fatty Acid Binding Protein 3/analysis , Fatty Acid Binding Protein 3/blood , Fenofibrate/adverse effects , Hypolipidemic Agents/adverse effects , Liver/drug effects , Animals , Biomarkers, Pharmacological/metabolism , Fatty Acid Binding Protein 3/genetics , Fenofibrate/toxicity , Heart/drug effects , Hypolipidemic Agents/toxicity , Liver/metabolism , Liver/pathology , Male , Myocardium/metabolism , Myocardium/pathology , RNA, Messenger/genetics , Rats , Rats, Sprague-Dawley , Up-Regulation/drug effects
2.
J Pharm Sci ; 103(10): 3007-21, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25074668

ABSTRACT

This work summarizes the pharmaceutical evaluation of a preclinical drug candidate with poor physicochemical properties. Compound 1 is a weakly basic, GPR-119 agonist designated to Biopharmaceutics Classification System Class II because of good permeability in a Caco-2 cell line model and poor solubility. Compound 1 showed good oral bioavailability from a solution formulation at low doses and oral exposure sufficient for toxicological evaluation at high doses from a nanosuspension of Form A-the only known polymorph of 1 during drug discovery. The identification of the thermodynamically stable polymorph, Form B, during early development adversely affected the bioperformance of the nanosuspension. The poor solubility of Form B resulted in a significant reduction in the oral exposure from a nanosuspension to a level that was insufficient for toxicological evaluation of compound 1. Subsequent to the discovery of Form B, multiple form and formulation engineering strategies were evaluated for their ability to enhance the oral exposure of 1. Formulations based on cocrystals and amorphous solid dispersions showed a statistically significant increase in exposure, sixfold and sevenfold, respectively, over the benchmark formulation, a suspension of Form B. The physicochemical characterization of 1, and the solid form and formulation engineering approaches explored to address the insufficient oral exposure of Form B are discussed along with insights on improving the physicochemical properties of the follow-on drug candidates in discovery.


Subject(s)
Chemistry, Pharmaceutical , Drug Evaluation, Preclinical , Animals , Calorimetry, Differential Scanning , Chromatography, High Pressure Liquid , Hydrogen-Ion Concentration , Male , Powder Diffraction , Rats , Rats, Sprague-Dawley , Solubility
3.
Pharm Res ; 31(12): 3445-60, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24980206

ABSTRACT

PURPOSE: To develop a tool based on siRNA-mediated knockdown of hepatic P450 oxidoreductase (POR) to decrease the CYP-mediated metabolism of small molecule drugs that suffer from rapid metabolism in vivo, with the aim of improving plasma exposure of these drugs. METHODS: siRNA against the POR gene was delivered using lipid nanoparticles (LNPs) into rats. The time course of POR mRNA knockdown, POR protein knockdown, and loss of POR enzyme activity was monitored. The rat livers were harvested to produce microsomes to determine the impact of POR knockdown on the metabolism of several probe substrates. Midazolam (a CYP3A substrate with high intrinsic clearance) was administered into LNP-treated rats to determine the impact of POR knockdown on midazolam pharmacokinetics. RESULTS: Hepatic POR mRNA and protein levels were significantly reduced by administering siRNA and the maximum POR enzyme activity reduction (~85%) occurred 2 weeks post-dose. In vitro analysis showed significant reductions in metabolism of probe substrates due to POR knockdown in liver, and in vivo POR knockdown resulted in greater than 10-fold increases in midazolam plasma concentrations following oral dosing. CONCLUSIONS: Anti-POR siRNA can be used to significantly reduce hepatic metabolism by various CYPs as well as greatly increase the bioavailability of high clearance compounds following an oral dose, thus enabling it to be used as a tool to increase drug exposure in vivo.


Subject(s)
Cytochrome P-450 Enzyme System/genetics , Gene Knockdown Techniques/methods , RNA, Small Interfering/pharmacology , Animals , Chemistry, Pharmaceutical , Diclofenac/metabolism , In Vitro Techniques , Male , Microsomes/drug effects , Microsomes/enzymology , Microsomes, Liver/drug effects , Microsomes, Liver/enzymology , Midazolam/metabolism , Nanoparticles , Protein Binding , Rats
4.
AAPS PharmSciTech ; 15(5): 1334-44, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24920524

ABSTRACT

To maximize the pharmacological effect of a pain reliever such as ibuprofen, early onset of action is critical. Unfortunately, the acidic nature of ibuprofen minimizes the amount of drug that can be solubilized under gastric conditions and would be available for immediate absorption upon entry into the intestine. Although the sodium salt of ibuprofen has higher solubility, rapid conversion from the salt to the poorly soluble free acid phase occurs under gastric conditions. Therefore, the combination of the highly soluble sodium salt form of ibuprofen with polymers was evaluated as an approach to prolong supersaturation of ibuprofen during the disproportionation of the salt. Binary combinations of ibuprofen sodium with polymers resulted in the identification of several formulations that demonstrated high degrees and extended durations of supersaturation during in vitro dissolution experiments. These formulations included HPMC, polyvinyl pyrrolidone-vinyl acetate copolymer (PVP-VA64), methylcellulose (MC), and hydroxypropyl cellulose (HPC). The in vitro supersaturation observed with these ibuprofen-polymer formulations translated to an increase in Cmax and an earlier Tmax for the PVP-VA64, MC, and HPC formulations relative to ibuprofen only controls when administered orally to rats under fasted conditions. Based on these observations, combining ibuprofen sodium with polymers such as PVP-VA64, MC, or HPC is a viable formulation approach to prolong supersaturation in the stomach and enable an optimized pharmacokinetic profile in vivo where rapid onset of action is desired.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Ibuprofen/pharmacokinetics , Sodium/chemistry , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Chemistry, Pharmaceutical , Excipients , Ibuprofen/administration & dosage , Ibuprofen/chemistry , Male , Polymers , Rats , Rats, Wistar , Solubility
5.
J Pharm Sci ; 93(10): 2488-96, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15349958

ABSTRACT

Cytochromes P450 (CYPs) and p-glycoproteins (Pgps) are believed to play important roles in drug absorption, metabolism, and elimination. Numerous drugs and environmental chemicals can modulate expression of these two classes of genes in different species. The present study investigated the effect of dexamethasone (Dex) on gene expression on both message and protein levels of mdr1a, mdr1b, CYP3A1, and CYP3A2 in small intestine, colon, liver, kidney, and brain microvessels of the rats treated orally with Dex at 1 or 20 mg/kg/day for 3 days. The basal expression of mdr1a mRNA was highest in the brain microvessels followed by colon, small intestine, liver, and kidney, and mdr1b mRNA was highest in the brain microvessels followed by kidney, liver, colon, and small intestine. After Dex treatment, mdr1a mRNA was increased by 5.5- and 10.7-fold in the small intestine, decreased extensively by 85-90% in the liver, and showed little or no change in the colon, kidney, and brain microvessels compared to the control rats. A similar pattern was observed for mdr1b mRNA. CYP3A1 mRNA was increased in all tissues examined. CYP3A2 mRNA was not significantly changed with the exception that at 20 mg/kg CYP3A2 mRNA was increased 5- and 30-fold in the colon and kidney. In general, Western blot analyses were consistent with mRNA changes. CYP3A protein expression was increased in all tissues examined. The disparity of the impact of Dex on the CYP 3A and Pgp expression in these studies suggest that the regulation of Pgp expression is very complex and is difficult to predict solely based on the PXR response to xenobiotics.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B/biosynthesis , ATP-Binding Cassette Transporters/biosynthesis , Aryl Hydrocarbon Hydroxylases/biosynthesis , Dexamethasone/pharmacology , Membrane Proteins/biosynthesis , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP-Binding Cassette Transporters/genetics , Administration, Oral , Animals , Aryl Hydrocarbon Hydroxylases/genetics , Blotting, Western , Brain/blood supply , Colon/metabolism , Cytochrome P-450 CYP3A , Immunoblotting , Intestine, Small/metabolism , Kidney/metabolism , Liver/metabolism , Male , Membrane Proteins/genetics , Microcirculation , Polymerase Chain Reaction , RNA, Messenger/biosynthesis , Rats , Rats, Sprague-Dawley , ATP-Binding Cassette Sub-Family B Member 4
SELECTION OF CITATIONS
SEARCH DETAIL
...