Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Cell Stress Chaperones ; 29(2): 338-348, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38521349

ABSTRACT

The 70 kDa heat shock protein (Hsp70) chaperones control protein homeostasis in all ATP-containing cellular compartments. J-domain proteins (JDPs) coevolved with Hsp70s to trigger ATP hydrolysis and catalytically upload various substrate polypeptides in need to be structurally modified by the chaperone. Here, we measured the protein disaggregation and refolding activities of the main yeast cytosolic Hsp70, Ssa1, in the presence of its most abundant JDPs, Sis1 and Ydj1, and two swap mutants, in which the J-domains have been interchanged. The observed differences by which the four constructs differently cooperate with Ssa1 and cooperate with each other, as well as their observed intrinsic ability to bind misfolded substrates and trigger Ssa1's ATPase, indicate the presence of yet uncharacterized intramolecular dynamic interactions between the J-domains and the remaining C-terminal segments of these proteins. Taken together, the data suggest an autoregulatory role to these intramolecular interactions within both type A and B JDPs, which might have evolved to reduce energy-costly ATPase cycles by the Ssa1-4 chaperones that are the most abundant Hsp70s in the yeast cytosol.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , HSP40 Heat-Shock Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Protein Binding , HSP70 Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism
3.
Nat Chem Biol ; 19(2): 198-205, 2023 02.
Article in English | MEDLINE | ID: mdl-36266349

ABSTRACT

Detailed understanding of the mechanism by which Hsp70 chaperones protect cells against protein aggregation is hampered by the lack of a comprehensive characterization of the aggregates, which are typically heterogeneous. Here we designed a reporter chaperone substrate, MLucV, composed of a stress-labile luciferase flanked by stress-resistant fluorescent domains, which upon denaturation formed a discrete population of small aggregates. Combining Förster resonance energy transfer and enzymatic activity measurements provided unprecedented details on the aggregated, unfolded, Hsp70-bound and native MLucV conformations. The Hsp70 mechanism first involved ATP-fueled disaggregation and unfolding of the stable pre-aggregated substrate, which stretched MLucV beyond simply unfolded conformations, followed by native refolding. The ATP-fueled unfolding and refolding action of Hsp70 on MLucV aggregates could accumulate native MLucV species under elevated denaturing temperatures highly adverse to the native state. These results unambiguously exclude binding and preventing of aggregation from the non-equilibrium mechanism by which Hsp70 converts stable aggregates into metastable native proteins.


Subject(s)
HSP70 Heat-Shock Proteins , Protein Folding , HSP70 Heat-Shock Proteins/chemistry , Molecular Chaperones/chemistry , Luciferases/metabolism , Adenosine Triphosphate , Protein Denaturation , Protein Unfolding
4.
Front Mol Biosci ; 8: 768888, 2021.
Article in English | MEDLINE | ID: mdl-34778379

ABSTRACT

Life is a non-equilibrium phenomenon. Owing to their high free energy content, the macromolecules of life tend to spontaneously react with ambient oxygen and water and turn into more stable inorganic molecules. A similar thermodynamic picture applies to the complex shapes of proteins: While a polypeptide is emerging unfolded from the ribosome, it may spontaneously acquire secondary structures and collapse into its functional native conformation. The spontaneity of this process is evidence that the free energy of the unstructured state is higher than that of the structured native state. Yet, under stress or because of mutations, complex polypeptides may fail to reach their native conformation and form instead thermodynamically stable aggregates devoid of biological activity. Cells have evolved molecular chaperones to actively counteract the misfolding of stress-labile proteins dictated by equilibrium thermodynamics. HSP60, HSP70 and HSP100 can inject energy from ATP hydrolysis into the forceful unfolding of stable misfolded structures in proteins and convert them into unstable intermediates that can collapse into the native state, even under conditions inauspicious for that state. Aggregates and misfolded proteins may also be forcefully unfolded and degraded by chaperone-gated endo-cellular proteases, and in eukaryotes also by chaperone-mediated autophagy, paving the way for their replacement by new, unaltered functional proteins. The greater energy cost of degrading and replacing a polypeptide, with respect to the cost of its chaperone-mediated repair represents a thermodynamic dilemma: some easily repairable proteins are better to be processed by chaperones, while it can be wasteful to uselessly try recover overly compromised molecules, which should instead be degraded and replaced. Evolution has solved this conundrum by creating a host of unfolding chaperones and degradation machines and by tuning their cellular amounts and activity rates.

5.
Front Mol Biosci ; 8: 653073, 2021.
Article in English | MEDLINE | ID: mdl-33937334

ABSTRACT

In eukaryotes, the 90-kDa heat shock proteins (Hsp90s) are profusely studied chaperones that, together with 70-kDa heat shock proteins (Hsp70s), control protein homeostasis. In bacteria, however, the function of Hsp90 (HtpG) and its collaboration with Hsp70 (DnaK) remains poorly characterized. To uncover physiological processes that depend on HtpG and DnaK, we performed comparative quantitative proteomic analyses of insoluble and total protein fractions from unstressed wild-type (WT) Escherichia coli and from knockout mutants ΔdnaKdnaJ (ΔKJ), ΔhtpG (ΔG), and ΔdnaKdnaJΔhtpG (ΔKJG). Whereas the ΔG mutant showed no detectable proteomic differences with wild-type, ΔKJ expressed more chaperones, proteases and ribosomes and expressed dramatically less metabolic and respiratory enzymes. Unexpectedly, we found that the triple mutant ΔKJG showed higher levels of metabolic and respiratory enzymes than ΔKJ, suggesting that bacterial Hsp90 mediates the degradation of aggregation-prone Hsp70-Hsp40 substrates. Further in vivo experiments suggest that such Hsp90-mediated degradation possibly occurs through the HslUV protease.

6.
Haematologica ; 106(6): 1519-1534, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33832207

ABSTRACT

Erythropoiesis is a tightly regulated cell differentiation process in which specialized oxygen- and carbon dioxide-carrying red blood cells are generated in vertebrates. Extensive reorganization and depletion of the erythroblast proteome leading to the deterioration of general cellular protein quality control pathways and rapid hemoglobin biogenesis rates could generate misfolded/aggregated proteins and trigger proteotoxic stresses during erythropoiesis. Such cytotoxic conditions could prevent proper cell differentiation resulting in premature apoptosis of erythroblasts (ineffective erythropoiesis). The heat shock protein 70 (Hsp70) molecular chaperone system supports a plethora of functions that help maintain cellular protein homeostasis (proteostasis) and promote red blood cell differentiation and survival. Recent findings show that abnormalities in the expression, localization and function of the members of this chaperone system are linked to ineffective erythropoiesis in multiple hematological diseases in humans. In this review, we present latest advances in our understanding of the distinct functions of this chaperone system in differentiating erythroblasts and terminally differentiated mature erythrocytes. We present new insights into the protein repair-only function(s) of the Hsp70 system, perhaps to minimize protein degradation in mature erythrocytes to warrant their optimal function and survival in the vasculature under healthy conditions. The work also discusses the modulatory roles of this chaperone system in a wide range of hematological diseases and the therapeutic gain of targeting Hsp70.


Subject(s)
HSP70 Heat-Shock Proteins , Molecular Chaperones , Animals , Erythroblasts , Erythrocytes , Erythropoiesis , Humans
7.
Plant Cell Environ ; 44(7): 2117-2133, 2021 07.
Article in English | MEDLINE | ID: mdl-33314263

ABSTRACT

At dawn of a scorching summer day, land plants must anticipate upcoming extreme midday temperatures by timely establishing molecular defences that can keep heat-labile membranes and proteins functional. A gradual morning pre-exposure to increasing sub-damaging temperatures induces heat-shock proteins (HSPs) that are central to the onset of plant acquired thermotolerance (AT). To gain knowledge on the mechanisms of AT in the model land plant Physcomitrium patens, we used label-free LC-MS/MS proteomics to quantify the accumulated and depleted proteins before and following a mild heat-priming treatment. High protein crowding is thought to promote protein aggregation, whereas molecular chaperones prevent and actively revert aggregation. Yet, we found that heat priming (HP) did not accumulate HSP chaperones in chloroplasts, although protein crowding was six times higher than in the cytosol. In contrast, several HSP20s strongly accumulated in the cytosol, yet contributing merely 4% of the net mass increase of heat-accumulated proteins. This is in poor concordance with their presumed role at preventing the aggregation of heat-labile proteins. The data suggests that under mild HP unlikely to affect protein stability. Accumulating HSP20s leading to AT, regulate the activity of rare and specific signalling proteins, thereby preventing cell death under noxious heat stress.


Subject(s)
Bryopsida/physiology , Plant Proteins/metabolism , Thermotolerance/physiology , Bryopsida/cytology , Chromatography, Liquid , Cytosol/metabolism , Gene Expression Regulation, Plant , HSP20 Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , Multiprotein Complexes/metabolism , Photosystem II Protein Complex/metabolism , Plant Proteins/analysis , Plant Proteins/genetics , Proteomics , Tandem Mass Spectrometry , Workflow
8.
Front Med (Lausanne) ; 7: 564170, 2020.
Article in English | MEDLINE | ID: mdl-33043037

ABSTRACT

Mortality in COVID-19 patients predominantly results from an acute respiratory distress syndrome (ARDS), in which lungs alveolar cells undergo programmed cell death. Mortality in a sepsis-induced ARDS rat model is reduced by adenovirus over-expression of the HSP70 chaperone. A natural rise of body temperature during mild fever can naturally accumulate high cellular levels of HSP70 that can arrest apoptosis and protect alveolar lung cells from inflammatory damages. However, beyond 1-2 h of fever, no HSP70 is being further produced and a decreased in body temperature required to the restore cell's ability to produce more HSP70 in a subsequent fever cycle. We suggest that antipyretics may be beneficial in COVID-19 patients subsequent to several hours of mild (<38.8°C) advantageous fever, allowing lung cells to accumulate protective HSP70 against damages from the inflammatory response to the virus SARS-CoV-2. With age, the ability to develop fever and accumulate HSP70 decreases. This could be ameliorated, when advisable to do so, by thermotherapies and/or physical training.

9.
Protein Sci ; 27(7): 1262-1274, 2018 07.
Article in English | MEDLINE | ID: mdl-29603451

ABSTRACT

Intracellular deposits of α-synuclein in the form of Lewy bodies are major hallmarks of Parkinson's disease (PD) and a range of related neurodegenerative disorders. Post-translational modifications (PTMs) of α-synuclein are increasingly thought to be major modulators of its structure, function, degradation and toxicity. Among these PTMs, phosphorylation near the C-terminus at S129 has emerged as a dominant pathogenic modification as it is consistently observed to occur within the brain and cerebrospinal fluid (CSF) of post-mortem PD patients, and its level appears to correlate with disease progression. Phosphorylation at the neighboring tyrosine residue Y125 has also been shown to protect against α-synuclein toxicity in a Drosophila model of PD. In the present study we address the potential roles of C-terminal phosphorylation in modulating the interaction of α-synuclein with other protein partners, using a single domain antibody fragment (NbSyn87) that binds to the C-terminal region of α-synuclein with nanomolar affinity. The results reveal that phosphorylation at S129 has negligible effect on the binding affinity of NbSyn87 to α-synuclein while phosphorylation at Y125, only four residues away, decreases the binding affinity by a factor of 400. These findings show that, despite the fact that α-synuclein is intrinsically disordered in solution, selective phosphorylation can modulate significantly its interactions with other molecules and suggest how this particular form of modification could play a key role in regulating the normal and aberrant function of α-synuclein.


Subject(s)
Protein Processing, Post-Translational , Single-Domain Antibodies/metabolism , alpha-Synuclein/chemistry , alpha-Synuclein/metabolism , Autopsy , Binding Sites , Brain/metabolism , Humans , Parkinson Disease/metabolism , Phosphorylation , Protein Binding , Serine/metabolism , Tyrosine/metabolism , alpha-Synuclein/cerebrospinal fluid
10.
Nat Chem Biol ; 14(4): 388-395, 2018 04.
Article in English | MEDLINE | ID: mdl-29507388

ABSTRACT

During and after protein translation, molecular chaperones require ATP hydrolysis to favor the native folding of their substrates and, under stress, to avoid aggregation and revert misfolding. Why do some chaperones need ATP, and what are the consequences of the energy contributed by the ATPase cycle? Here, we used biochemical assays and physical modeling to show that the bacterial chaperones GroEL (Hsp60) and DnaK (Hsp70) both use part of the energy from ATP hydrolysis to restore the native state of their substrates, even under denaturing conditions in which the native state is thermodynamically unstable. Consistently with thermodynamics, upon exhaustion of ATP, the metastable native chaperone products spontaneously revert to their equilibrium non-native states. In the presence of ATPase chaperones, some proteins may thus behave as open ATP-driven, nonequilibrium systems whose fate is only partially determined by equilibrium thermodynamics.


Subject(s)
Adenosine Triphosphate/chemistry , Chaperonin 60/chemistry , Escherichia coli Proteins/chemistry , HSP70 Heat-Shock Proteins/chemistry , Malate Dehydrogenase/chemistry , Proteins/chemistry , Adenosine Triphosphatases/chemistry , Animals , Mitochondria/metabolism , Molecular Chaperones/chemistry , Protein Conformation , Protein Denaturation , Protein Folding , Swine , Thermodynamics
11.
Curr Genet ; 64(1): 177-181, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28936749

ABSTRACT

Cadmium is a highly poisonous metal and a human carcinogen, but the molecular mechanisms underlying its cellular toxicity are not fully understood. Recent findings in yeast cells indicate that cadmium exerts its deleterious effects by inducing widespread misfolding and aggregation of nascent proteins. Here, we discuss this novel mode of toxic heavy metal action and propose a mechanism by which molecular chaperones may reduce the damaging effects of heavy metal ions on protein structures.


Subject(s)
Protein Aggregates , Protein Aggregation, Pathological , Protein Folding , Proteins/chemistry , Proteins/metabolism , Animals , Cadmium/metabolism , Cadmium/toxicity , Heavy Metal Poisoning , Humans , Molecular Chaperones/chemistry , Molecular Chaperones/metabolism , Prion Proteins/chemistry , Prion Proteins/metabolism , Protein Binding , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism
12.
EMBO J ; 36(22): 3274-3291, 2017 11 15.
Article in English | MEDLINE | ID: mdl-29030482

ABSTRACT

Sorting, transport, and autophagic degradation of proteins in endosomes and lysosomes, as well as the division of these organelles, depend on scission of membrane-bound tubulo-vesicular carriers. How scission occurs is poorly understood, but family proteins bind these membranes. Here, we show that the yeast PROPPIN Atg18 carries membrane scission activity. Purified Atg18 drives tubulation and scission of giant unilamellar vesicles. Upon membrane contact, Atg18 folds its unstructured CD loop into an amphipathic α-helix that inserts into the bilayer. This allows the protein to engage its two lipid binding sites for PI3P and PI(3,5)P2 PI(3,5)P2 induces Atg18 oligomerization, which should concentrate lipid-inserted α-helices in the outer membrane leaflet and drive membrane tubulation and scission. The scission activity of Atg18 is compatible with its known roles in endo-lysosomal protein trafficking, autophagosome biogenesis, and vacuole fission. Key features required for membrane tubulation and scission by Atg18 are shared by other PROPPINs, suggesting that membrane scission may be a generic function of this protein family.


Subject(s)
Autophagy-Related Proteins/metabolism , Cell Membrane/metabolism , Membrane Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Amino Acid Sequence , Autophagy , Autophagy-Related Proteins/chemistry , Green Fluorescent Proteins/metabolism , Lipids/chemistry , Membrane Proteins/chemistry , Mutation/genetics , Peptides/chemistry , Phosphatidylinositol Phosphates/metabolism , Protein Multimerization , Protein Structure, Secondary , Saccharomyces cerevisiae Proteins/chemistry , Sodium Chloride/pharmacology , Time-Lapse Imaging , Unilamellar Liposomes/metabolism , Vacuoles/metabolism
14.
PLoS Biol ; 15(3): e2000374, 2017 03.
Article in English | MEDLINE | ID: mdl-28257421

ABSTRACT

Sirtuin genes have been associated with aging and are known to affect multiple cellular pathways. Sirtuin 2 was previously shown to modulate proteotoxicity associated with age-associated neurodegenerative disorders such as Alzheimer and Parkinson disease (PD). However, the precise molecular mechanisms involved remain unclear. Here, we provide mechanistic insight into the interplay between sirtuin 2 and α-synuclein, the major component of the pathognomonic protein inclusions in PD and other synucleinopathies. We found that α-synuclein is acetylated on lysines 6 and 10 and that these residues are deacetylated by sirtuin 2. Genetic manipulation of sirtuin 2 levels in vitro and in vivo modulates the levels of α-synuclein acetylation, its aggregation, and autophagy. Strikingly, mutants blocking acetylation exacerbate α-synuclein toxicity in vivo, in the substantia nigra of rats. Our study identifies α-synuclein acetylation as a key regulatory mechanism governing α-synuclein aggregation and toxicity, demonstrating the potential therapeutic value of sirtuin 2 inhibition in synucleinopathies.


Subject(s)
Parkinson Disease/metabolism , Parkinson Disease/pathology , Sirtuin 2/metabolism , alpha-Synuclein/toxicity , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Acetylation/drug effects , Animals , Autophagy/drug effects , Cell Membrane/drug effects , Cell Membrane/metabolism , Cells, Cultured , Cerebral Cortex/pathology , Disease Models, Animal , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Gene Deletion , Gene Knockdown Techniques , HEK293 Cells , Humans , Lysine/metabolism , Mice, Inbred C57BL , Mice, Knockout , Mutation/genetics , Neuroprotection/drug effects , Protein Aggregates/drug effects , Protein Binding
15.
ACS Chem Biol ; 11(9): 2428-37, 2016 09 16.
Article in English | MEDLINE | ID: mdl-27356045

ABSTRACT

Alpha-synuclein is a presynaptic protein of poorly understood function that is linked to both genetic and sporadic forms of Parkinson's disease. We have proposed that alpha-synuclein may function specifically at synaptic vesicles docked at the plasma membrane, and that the broken-helix state of the protein, comprising two antiparallel membrane-bound helices connected by a nonhelical linker, may target the protein to such docked vesicles by spanning between the vesicle and the plasma membrane. Here, we demonstrate that phosphorylation of alpha-synuclein at tyrosine 39, carried out by c-Abl in vivo, may facilitate interconversion of synuclein from the vesicle-bound extended-helix state to the broken-helix state. Specifically, in the presence of lipid vesicles, Y39 phosphorylation leads to decreased binding of a region corresponding to helix-2 of the broken-helix state, potentially freeing this region of the protein to interact with other membrane surfaces. This effect is largely recapitulated by the phosphomimetic mutation Y39E, and expression of this mutant in yeast results in decreased membrane localization. Intriguingly, the effects of Y39 phosphorylation on membrane binding closely resemble those of the recently reported disease linked mutation G51D. These findings suggest that Y39 phosphorylation could modulate functional aspects of alpha-synuclein and perhaps influence pathological aggregation of the protein as well.


Subject(s)
Mutation , alpha-Synuclein/metabolism , Cell Membrane/metabolism , In Vitro Techniques , Lipids/chemistry , Magnetic Resonance Spectroscopy , Micelles , Phosphorylation , Protein Structure, Secondary , Sodium Dodecyl Sulfate/chemistry , alpha-Synuclein/chemistry , alpha-Synuclein/genetics
16.
Methods Mol Biol ; 1345: 3-20, 2016.
Article in English | MEDLINE | ID: mdl-26453202

ABSTRACT

Posttranslational modifications (PTMs) serve as molecular switches for regulating protein folding, function, and interactome and have been implicated in the misfolding and amyloid formation by several proteins linked to neurodegenerative diseases, including Alzheimer's and Parkinson's disease. Understanding the role of individual PTMs in protein misfolding and aggregation requires the preparation of site-specifically modified proteins, as well as the identification of the enzymes involved in regulating these PTMs. Recently, our group has pioneered the development of enzymatic, synthetic, and semisynthetic strategies that allow site-specific introduction of PTMs at single or multiple sites and generation of modified proteins in milligram quantities. In this chapter, we provide detailed description of enzymatic and semisynthetic strategies for the generation of the phosphorylated α-Synuclein (α-Syn) at S129, (pS129), which has been identified as a pathological hallmark of Parkinson's disease. The semisynthetic method described for generation of α-Syn-pS129 requires expertise with protein chemical ligation, but can be used to incorporate other PTMs (single or multiple) within the α-Syn C-terminus if desired. On the other hand, the in vitro kinase-mediated phosphorylation strategy does not require any special setup and is rather easy to apply, but its application is restricted to the generation of α-Syn_pS129. These methods have the potential to increase the availability of pure and homogenous modified α-Syn reagents, which may be used as standards in numerous applications, including the search for potential biomarkers of synucleinopathies.


Subject(s)
Molecular Biology/methods , Phosphorylation/genetics , Protein Processing, Post-Translational/genetics , alpha-Synuclein/genetics , Biomarkers/metabolism , Humans , Neurodegenerative Diseases/genetics , Protein Folding , alpha-Synuclein/metabolism
17.
J Biol Chem ; 289(32): 21856-76, 2014 Aug 08.
Article in English | MEDLINE | ID: mdl-24936070

ABSTRACT

Over the last two decades, the identification of missense mutations in the α-synuclein (α-Syn) gene SNCA in families with inherited Parkinson disease (PD) has reinforced the central role of α-Syn in PD pathogenesis. Recently, a new missense mutation (H50Q) in α-Syn was described in patients with a familial form of PD and dementia. Here we investigated the effects of this novel mutation on the biophysical properties of α-Syn and the consequences for its cellular function. We found that the H50Q mutation affected neither the structure of free or membrane-bound α-Syn monomer, its interaction with metals, nor its capacity to be phosphorylated in vitro. However, compared with the wild-type (WT) protein, the H50Q mutation accelerated α-Syn fibrillization in vitro. In cell-based models, H50Q mutation did not affect α-Syn subcellular localization or its ability to be phosphorylated by PLK2 and GRK6. Interestingly, H50Q increased α-Syn secretion from SHSY5Y cells into culture medium and induced more mitochondrial fragmentation in hippocampal neurons. Although the transient overexpression of WT or H50Q did not induce toxicity, both species induced significant cell death when added to the culture medium of hippocampal neurons. Strikingly, H50Q exhibited more toxicity, suggesting that the H50Q-related enhancement of α-Syn aggregation and secretion may play a role in the extracellular toxicity of this mutant. Together, our results provide novel insight into the mechanism by which this newly described PD-associated mutation may contribute to the pathogenesis of PD and related disorders.


Subject(s)
Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutation, Missense , alpha-Synuclein/chemistry , alpha-Synuclein/genetics , Animals , Cell Death/genetics , Cell Death/physiology , Cell Line , Cells, Cultured , Humans , Lipid Metabolism , Metals/metabolism , Mice , Mutant Proteins/physiology , Neurons/metabolism , Neurons/pathology , Parkinson Disease/etiology , Parkinson Disease/genetics , Parkinson Disease/physiopathology , Phosphorylation , Protein Aggregates/genetics , Protein Aggregation, Pathological/genetics , Protein Structure, Quaternary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , alpha-Synuclein/physiology
18.
Hum Mol Genet ; 23(11): 2858-79, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24412932

ABSTRACT

Increasing evidence suggests that the c-Abl protein tyrosine kinase could play a role in the pathogenesis of Parkinson's disease (PD) and other neurodegenerative disorders. c-Abl has been shown to regulate the degradation of two proteins implicated in the pathogenesis of PD, parkin and α-synuclein (α-syn). The inhibition of parkin's neuroprotective functions is regulated by c-Abl-mediated phosphorylation of parkin. However, the molecular mechanisms by which c-Abl activity regulates α-syn toxicity and clearance remain unknown. Herein, using NMR spectroscopy, mass spectrometry, in vitro enzymatic assays and cell-based studies, we established that α-syn is a bona fide substrate for c-Abl. In vitro studies demonstrate that c-Abl directly interacts with α-syn and catalyzes its phosphorylation mainly at tyrosine 39 (pY39) and to a lesser extent at tyrosine 125 (pY125). Analysis of human brain tissues showed that pY39 α-syn is detected in the brains of healthy individuals and those with PD. However, only c-Abl protein levels were found to be upregulated in PD brains. Interestingly, nilotinib, a specific inhibitor of c-Abl kinase activity, induces α-syn protein degradation via the autophagy and proteasome pathways, whereas the overexpression of α-syn in the rat midbrains enhances c-Abl expression. Together, these data suggest that changes in c-Abl expression, activation and/or c-Abl-mediated phosphorylation of Y39 play a role in regulating α-syn clearance and contribute to the pathogenesis of PD.


Subject(s)
Parkinson Disease/enzymology , Proto-Oncogene Proteins c-abl/metabolism , alpha-Synuclein/metabolism , Aged , Aged, 80 and over , Animals , Brain/enzymology , Brain/metabolism , Brain/pathology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged , Parkinson Disease/genetics , Parkinson Disease/metabolism , Parkinson Disease/pathology , Phosphorylation , Proteolysis , Proto-Oncogene Proteins c-abl/genetics , alpha-Synuclein/genetics
19.
Proc Natl Acad Sci U S A ; 110(44): 17726-31, 2013 Oct 29.
Article in English | MEDLINE | ID: mdl-24043770

ABSTRACT

Ubiquitination regulates, via different modes of modifications, a variety of biological processes, and aberrations in the process have been implicated in the pathogenesis of several neurodegenerative diseases. However, our ability to dissect the pathophysiological relevance of the ubiquitination code has been hampered due to the lack of methods that allow site-specific introduction of ubiquitin (Ub) chains to a specific substrate. Here, we describe chemical and semisynthetic strategies for site-specific incorporation of K48-linked di- or tetra-Ub chains onto the side chain of Lys12 of α-Synuclein (α-Syn). These advances provided unique opportunities to elucidate the role of ubiquitination and Ub chain length in regulating α-Syn stability, aggregation, phosphorylation, and clearance. In addition, we investigated the cross-talk between phosphorylation and ubiquitination, the two most common α-Syn pathological modifications identified within Lewy bodies and Parkinson disease. Our results suggest that α-Syn functions under complex regulatory mechanisms involving cross-talk among different posttranslational modifications.


Subject(s)
Parkinson Disease/physiopathology , Polyubiquitin/chemistry , Protein Engineering/methods , alpha-Synuclein/chemistry , Humans , Parkinson Disease/metabolism , Phosphorylation , Polyubiquitin/chemical synthesis , Protein Stability , Ubiquitination , alpha-Synuclein/chemical synthesis
20.
Chem Commun (Camb) ; 49(81): 9254-6, 2013 Oct 18.
Article in English | MEDLINE | ID: mdl-23995579

ABSTRACT

Post-translational modifications (PTMs) regulate key aspects of the physiological and pathogenic properties of Parkinson's disease-associated presynaptic protein α-synuclein. We herein describe a one-pot total chemical synthesis that should enable site-specific introduction of single or multiple PTMs or small molecule probes essentially at any site within the protein.


Subject(s)
alpha-Synuclein/chemical synthesis , Catalysis , Humans , Phenylacetates/chemistry , Sulfhydryl Compounds/chemistry , Thiazolidines/chemistry , alpha-Synuclein/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...