Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Infect Dis Model ; 9(1): 245-262, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38312350

ABSTRACT

The COVID-19 pandemic caused significant disruptions in the healthcare system, affecting vaccinations and the management of diphtheria cases. As a consequence of these disruptions, numerous countries have experienced a resurgence or an increase in diphtheria cases. West Java province in Indonesia is identified as one of the high-risk areas for diphtheria, experiencing an upward trend in cases from 2021 to 2023. To analyze the situation, we developed an SIR model, which integrated DPT and booster vaccinations to determine the basic reproduction number, an essential parameter for infectious diseases. Through spatial analysis of geo-referenced data, we identified hotspots and explained diffusion in diphtheria case clusters. The calculation of R0 resulted in an R0 = 1.17, indicating the potential for a diphtheria outbreak in West Java. To control the increasing cases, one possible approach is to raise the booster vaccination coverage from the current 64.84% to 75.15%, as suggested by simulation results. Furthermore, the spatial analysis revealed that hot spot clusters were present in the western, central, and southern regions, posing a high risk not only in densely populated areas but also in rural regions. The diffusion pattern of diphtheria clusters displayed an expansion-contagious pattern. Understanding the rising trend of diphtheria cases and their geographic distribution can offer crucial insights for government and health authorities to manage the number of diphtheria cases and make informed decisions regarding the best prevention and intervention strategies.

2.
Trop Med Infect Dis ; 7(12)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36548662

ABSTRACT

COVID-19 has currently become a global pandemic and caused a high number of infected people and deaths. To restrain the coronavirus spread, many countries have implemented restrictions on people's movement and outdoor activities. The enforcement of health emergencies such as quarantine has a positive impact on reducing the COVID-19 infection risk, but it also has unwanted influences on health, social, and economic sectors. Here, we developed a compartmental mathematical model for COVID-19 transmission dynamic accommodating quarantine process and including tuberculosis and diabetic people compartments. We highlighted the potential negative impact induced by quarantine implementation on the increasing number of people with tuberculosis and diabetes. The actual COVID-19 data recorded in Indonesia during the Delta and Omicron variant attacks were well-approximated by the model's output. A positive relationship was indicated by a high value of Pearson correlation coefficient, r=0.9344 for Delta and r=0.8961 for Omicron with a significance level of p<0.05. By varying the value of the quarantine parameter, this study obtained that quarantine effectively reduces the number of COVID-19 but induces an increasing number of tuberculosis and diabetic people. In order to minimize these negative impacts, increasing public awareness about the dangers of TB transmission and implementing a healthy lifestyle were considered the most effective strategies based on the simulation. The insights and results presented in this study are potentially useful for relevant authorities to increase public awareness of the potential risk of TB transmission and to promote a healthy lifestyle during the implementation of quarantine.

3.
Heliyon ; 8(8): e10350, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36061000

ABSTRACT

Dengue fever is a notable vector-borne viral disease, currently becoming the most dreaded worldwide health problem in terms of the number of people affected. A data set of confirmed dengue incidences collected in the province of West Java has allowed us to explore dengue's temporal trends and spatial distributions to obtain more obvious insights into its spatial-temporal evolution. We utilized the Richards model to estimate the growth rate and detect the peak (or turning point) of the dengue infection wave by identifying the temporal progression at each location. Using spatial analysis of geo-referenced data from a local perspective, we investigated the changes in the spatial clusters of dengue cases and detected hot spots and cold spots in each weekly cycle. We found that the trend of confirmed dengue incidences significantly increases from January to March. More than two-third (70.4%) of the regions in West Java had their dengue infection turning point ranging from the first week of January to the second week of March. This trend clearly coincides with the peak of precipitation level during the rainy season. Further, the spatial analysis identified the hot spots distributed across central, northern, northeastern, and southeastern regions in West Java. The densely populated areas were likewise seen to be associated with the high-risk areas of dengue exposure. Recognizing the peak of epidemic and geographical distribution of dengue cases might provide important insights that may help local authorities optimize their dengue prevention and intervention programs.

4.
Infect Dis Model ; 6: 598-611, 2021.
Article in English | MEDLINE | ID: mdl-33869907

ABSTRACT

BACKGROUND: Dengue is one of the most rapidly spreading vector-borne diseases, which is considered to be a major health concern in tropical and sub-tropical countries. It is strongly believed that the spread and abundance of vectors are related to climate. Construction of climate-based mathematical model that integrates meteorological factors into disease infection model becomes compelling challenge since the climate is positively associated with both incidence and vector existence. METHODS: A host-vector model is constructed to simulate the dynamic of transmission. The infection rate parameter is replaced with the time-dependent coefficient obtained by optimization to approximate the daily dengue data. Further, the optimized infection rate is denoted as a function of climate variables using the Autoregressive Distributed Lag (ARDL) model. RESULTS: The infection parameter can be extended when updated daily climates are known, and it can be useful to forecast dengue incidence. This approach provides proper prediction, even when tested in increasing or decreasing prediction windows. In addition, associations between climate and dengue are presented as a reversed slide-shaped curve for dengue-humidity and a reversed U-shaped curves for dengue-temperature and dengue-precipitation. The range of optimal temperature for infection is 24.3-30.5 °C. Humidity and precipitation are positively associated with dengue upper the threshold 70% at lag 38 days and below 50 mm at lag 50 days, respectively. CONCLUSION: Identification of association between climate and dengue is potentially useful to counter the high risk of dengue and strengthen the public health system and reduce the increase of the dengue burden.

SELECTION OF CITATIONS
SEARCH DETAIL
...