ABSTRACT
Silymarin is a free-radical scavenger and a membrane stabilizer which prevents lipoperoxidation and its associated cell damage in some experimental models. It has been proposed that lipid peroxidation caused by free radicals may be involved in alloxan-induced diabetes mellitus. Alloxan elicits pancreatic lipid peroxidation which precedes the appearance of hyperglycemia in mice. We studied the effects of silymarin on rat pancreas, the effect of this flavonoid on pancreatic, hepatic and blood glutathione (GSH) together with the pancreatic malondialdehyde concentrations in response to alloxan. On its own, silymarin increases pancreatic and blood GSH without changes in either hepatic GSH or in blood glucose. Silymarin prevents the increase in lipid peroxidation produced by alloxan. It also blunts the sustained increment in plasma glucose induced by alloxan. We suggest that silymarin has a protective effect on the pancreatic damage in experimental diabetes mellitus. This may be related to its antioxidative properties and to the increase in concentrations of plasma and pancreatic glutathione.