Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 11(2)2021 Feb 11.
Article in English | MEDLINE | ID: mdl-33670159

ABSTRACT

The photovoltaic effect in the anodic formation of silicon dioxide (SiO2) on porous silicon (PS) surfaces was investigated toward developing a potential passivation technique to achieve high efficiency nanostructured Si solar cells. The PS layers were prepared by electrochemical anodization in hydrofluoric acid (HF) containing electrolyte. An anodic SiO2 layer was formed on the PS surface via a bottom-up anodization mechanism in HCl/H2O solution at room temperature. The thickness of the oxide layer for surface passivation was precisely controlled by adjusting the anodizing current density and the passivation time, for optimal oxidation on the PS layer while maintaining its original nanostructure. HRTEM characterization of the microstructure of the PS layer confirms an atomic lattice matching at the PS/Si interface. The dependence of photovoltaic performance, series resistance, and shunt resistance on passivation time was examined. Due to sufficient passivation on the PS surface, a sample with anodization duration of 30 s achieved the best conversion efficiency of 10.7%. The external quantum efficiency (EQE) and internal quantum efficiency (IQE) indicate a significant decrease in reflectivity due to the PS anti-reflection property and indicate superior performance due to SiO2 surface passivation. In conclusion, the surface of PS solar cells could be successfully passivated by electrochemical anodization.

2.
Nanoscale ; 10(43): 20207-20217, 2018 Nov 08.
Article in English | MEDLINE | ID: mdl-30357204

ABSTRACT

One obstacle for the development of nanowire (NW) solar cells is the challenge to assess and control their nanoscale electrical properties. In this work a top-cell made of p-n GaAs core/shell NWs grown on a Si(111) substrate by Molecular Beam Epitaxy (MBE) is investigated by high resolution charge collection microscopy. Electron Beam Induced Current (EBIC) analyses of single NWs have validated the formation of a homogeneous radial p-n junction over the entire length of the NWs. The radial geometry leads to an increase of the junction area by 38 times with respect to the NW footprint. The interface between the NWs and the Si(111) substrate does not show any electrical loss, which would have led to a decrease of the EBIC signal. Single NW I-V characteristics present a diodic behavior. A model of the radial junction single NW is proposed and the electrical parameters are estimated by numerical fitting of the I-Vs and of the EBIC map. Solar cells based on NW arrays were fabricated and analyzed by EBIC microscopy, which evidenced the presence of a Schottky barrier at the NW/ITO top contact. Improvement of the top contact quality is achieved by thermal annealing at 400 °C, which strongly reduces the parasitic Schottky barrier.

3.
Opt Express ; 20 Suppl 5: A560-71, 2012 Sep 10.
Article in English | MEDLINE | ID: mdl-23037523

ABSTRACT

In this paper, we present the integration of combined front and back 1D and 2D diffraction gratings with different periods, within thin film photovoltaic solar cells based on crystalline silicon layers. The grating structures have been designed considering both the need for incident light absorption enhancement and the technological feasibility. Long wavelength absorption is increased thanks to the long period (750 nm) back grating, while the incident light reflection is reduced by using a short period (250 nm) front grating. The simulated short circuit current in a solar cell combining a front and a back grating structures with a 1.2 µm thick c-Si layer, together with the back electrode and TCO layers, is increased up to 30.3 mA/cm2, compared to 18.4 mA/cm2 for a reference stack, as simulated using the AM1.5G solar spectrum intensity distribution from 300 nm to 1100 nm, and under normal incidence.

4.
Opt Express ; 20 Suppl 4: A465-75, 2012 Jul 02.
Article in English | MEDLINE | ID: mdl-22828615

ABSTRACT

In this paper, we present the integration of an absorbing photonic crystal within a monocrystalline silicon thin film photovoltaic stack fabricated without epitaxy. Finite difference time domain optical simulations are performed in order to design one- and two-dimensional photonic crystals to assist crystalline silicon solar cells. The simulations show that the 1D and 2D patterned solar cell stacks would have an increased integrated absorption in the crystalline silicon layer would increase of respectively 38% and 50%, when compared to a similar but unpatterned stack, in the whole wavelength range between 300 nm and 1100 nm. In order to fabricate such patterned stacks, we developed an effective set of processes based on laser holographic lithography, reactive ion etching and inductively coupled plasma etching. Optical measurements performed on the patterned stacks highlight the significant absorption increase achieved in the whole wavelength range of interest, as expected by simulation. Moreover, we show that with this design, the angle of incidence has almost no influence on the absorption for angles as high as around 60°.

5.
Opt Express ; 18 Suppl 3: A293-9, 2010 Sep 13.
Article in English | MEDLINE | ID: mdl-21165059

ABSTRACT

We report on the absorption of a 100nm thick hydrogenated amorphous silicon layer patterned as a planar photonic crystal (PPC), using laser holography and reactive ion etching. Compared to an unpatterned layer, electromagnetic simulation and optical measurements both show a 50% increase of the absorption over the 0.38-0.75micron spectral range, in the case of a one-dimensional PPC. Such absorbing photonic crystals, combined with transparent and conductive layers, may be at the basis of new photovoltaic solar cells.

6.
Opt Express ; 17(16): 14312-21, 2009 Aug 03.
Article in English | MEDLINE | ID: mdl-19654839

ABSTRACT

We propose a design that increases significantly the absorption of a thin layer of absorbing material such as amorphous silicon. This is achieved by patterning a one-dimensional photonic crystal (1DPC) in this layer. Indeed, by coupling the incident light into slow Bloch modes of the 1DPC, we can control the photon lifetime and then, enhance the absorption integrated over the whole solar spectrum. Optimal parameters of the 1DPC maximize the integrated absorption in the wavelength range of interest, up to 45% in both S and P polarization states instead of 33% for the unpatterned, 100 nm thick amorphous silicon layer. Moreover, the absorption is tolerant with respect to fabrication errors, and remains relatively stable if the angle of incidence is changed.


Subject(s)
Electric Power Supplies , Optical Devices , Silicon/chemistry , Silicon/radiation effects , Solar Energy , Computer Simulation , Computer-Aided Design , Crystallization/methods , Equipment Design , Equipment Failure Analysis , Light , Models, Theoretical , Photons , Scattering, Radiation
SELECTION OF CITATIONS
SEARCH DETAIL