Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 685: 1066-1074, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31390697

ABSTRACT

Dispersal patterns of lichen species in monumental and archaeological sites and their relationships with spatial population structure are almost unknown, hampering predictions on colonization dynamics that are fundamental for planning conservation strategies. In this work, we tested if the local abundance and distribution pattern of some common lichen species on carbonate stones of heritage sites may be related to their patterns of propagule dispersal. We combined analyses of the spatial population structure of eight species on the calcareous balustrade of a heritage site in Torino (NW Italy) with aerobiological analyses. In situ and laboratory analyses were mainly focused on the ejection of ascospores and their air take-off and potential dispersal at short and long distance. Results indicate that the spatial distribution of lichens on the stone surfaces is influenced by both species-specific patterns of propagule dispersal and microenvironmental requirements. In particular, apotheciate species that have a higher ejection of ascospores with higher potential for long range dispersal are candidate for a much aggressive spreading on the monumental surfaces. Moreover, their occurrence on natural or artificial stone surfaces in the surroundings of the stone monumental surface may easily support recolonization dynamics after cleaning interventions, as an effective supply of propagules is expected. On the other hand, species with a lower dispersal rate have a more clustered distribution and are less effective in rapid recolonization, thus representing a minor threat for cultural heritage conservation. These results support the idea that information on the reproductive strategy and dispersal patterns of lichens should be coupled with traditional analyses on stone bioreceptivity and microclimatic conditions to plan effective restoration interventions of stone surfaces.


Subject(s)
Ecosystem , Lichens , Italy , Spores, Fungal
2.
Sci Total Environ ; 466-467: 26-33, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-23892020

ABSTRACT

Fungal particulates are a dominant component of the bioaerosol, but aerobiological studies traditionally focused on a limited set of fungi having relevance as allergens or plant pathogens. This study first analyzes the occurrence of lichen meiospores in the mycoaerosol, quantitatively evaluating in the atmosphere of an alpine environment the occurrence of polar diblastic spores, unequivocally attributable to the lichen family Teloschistaceae. The analysis of air-samples collected one week per month for one year with a Hirst-type sampler displayed a low percentage occurrence of polar-diblastic spores (<0.1%) with respect to the whole mycoaerosol, dominated by Cladosporium. Spearman's correlation tests on aerobiological and climatic data highlighted a strong relationship between the detection of Teloschistaceae spores and rainfall events, excluding seasonal patterns or daily rhythms of dispersion. The fact that all the air-sampled spores were attributable to the species of Teloschistaceae occurring in the site, together with laboratory observations of predominant short range dispersal patterns for polar diblastic and other lichen spores, indicated that sexual reproduction is mostly involved in the local expansion of colonization, dispersal from a long distance appearing a less probable phenomenon. These findings indicated that responses of lichen communities to climate factors, usually related to physiological processes, also depend on their influence on meiospore dispersal dynamics. Spatial limitations in dispersal, however, have to be taken into account in evaluating lichen distributional shifts as indicators of environmental changes.


Subject(s)
Aerosols/analysis , Air Microbiology , Ascomycota/physiology , Spores, Fungal/physiology , Climate , Italy , Lichens/physiology , Plant Dispersal
3.
J Hazard Mater ; 162(2-3): 1300-8, 2009 Mar 15.
Article in English | MEDLINE | ID: mdl-18692312

ABSTRACT

Asbestos-cement roofs, the most widespread sources of airborne, toxic and carcinogenic asbestos fibres, are often colonized by lichens. Since these latter are physical and chemical weathering agents, they have been often considered as significant responsible of disaggregation processes increasing fibre dispersion. Consequently, official guidelines for the management of asbestos often suggest their removal. Weathering and/or covering effects of lichens on asbestos-cement, however, have never been deeply investigated and available procedures to evaluate asbestos-cement aging do not take the biological colonization into account. In this study we show that a 25% lichen cover modifies physical and chemical properties of asbestos-cement sheets containing chrysotile and crocidolite fibres. By innovatively coupling pull up tests and image analysis of linear structures, we show that fibre loss is significantly lower ( approximately 30%) where lichens develop and offer a physical barrier to the fibre detachment. Below the most covering lichens (Acarospora cervina, Candelariella ssp.), chrysotile and crocidolite undergo a partial incongruent dissolution, which in laboratory assays generally determined a reduction of their surface reactivity. Because of their biocovering and bioweathering effects, lichens on asbestos-cement play a role which differs from the current public opinion and the assumptions of some official regulations, acting as effective spontaneous bioattenuation agents.


Subject(s)
Asbestos , Construction Materials , Lichens , Microscopy, Electron, Scanning , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...