Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 130(17): 174002, 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37172227

ABSTRACT

The heat transport by rapidly rotating Rayleigh-Bénard convection is of fundamental importance to many geophysical flows. Laboratory measurements are impeded by robust wall modes that develop along vertical walls, significantly perturbing the heat flux. We show that narrow horizontal fins along the vertical walls efficiently suppress wall modes ensuring that their contribution to the global heat flux is negligible compared with bulk convection in the geostrophic regime, thereby paving the way for new experimental studies of geophysically relevant regimes of rotating convection.

2.
Phys Rev Lett ; 129(6): 064502, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-36018657

ABSTRACT

In marine plankton, many swimming species can perceive their environment with flow sensors. Can they use this flow information to travel faster in turbulence? To address this question, we consider plankters swimming at constant speed, whose goal is to move upward. We propose a robust analytical behavior that allows plankters to choose a swimming direction according to the local flow gradients. We show numerically that such plankters can "surf" on turbulence and reach net vertical speeds up to twice their swimming speed. This new physics-based model suggests that planktonic organisms can exploit turbulence features for navigation.


Subject(s)
Plankton , Swimming
3.
Phys Rev E ; 103(6): L061101, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34271682

ABSTRACT

Helicity plays an important role in spectacular geophysical phenomena such as hurricanes or the generation of the terrestrial magnetic field. The present investigation shows how helicity can be created in a statistically homogeneous but anisotropic flow, driven by buoyancy. If the flow is close enough to a two-dimensional limit, spontaneous symmetry breaking leads to the generation of mean helicity. In particular, we explain these observations by identifying a simple linear mechanism, the relevance of which is illustrated by simulations of unstably stratified turbulence in a conducting fluid on which a magnetic field is imposed. Finally it is shown that the self-organized state displays dynamical reversals of the sign of the mean helicity.

4.
Phys Rev E ; 103(4-1): 043101, 2021 Apr.
Article in English | MEDLINE | ID: mdl-34005912

ABSTRACT

We consider the problem of an inextensible but flexible fiber advected by a steady chaotic flow, and ask the simple question of whether the fiber can spontaneously knot itself. Using a one-dimensional Cosserat model, a simple local viscous drag model and discrete contact forces, we explore the probability of finding knots at any given time when the fiber is interacting with the ABC class of flows. The bending rigidity is shown to have a marginal effect compared to that of increasing the fiber length. Complex knots are formed up to 11 crossings, but some knots are more probable than others. The finite-time Lyapunov exponent of the flow is shown to have a positive effect on the knot probability. Finally, contact forces appear to be crucial since knotted configurations can remain stable for times much longer than the turnover time of the flow, something that is not observed when the fiber can freely cross itself.

5.
Proc Math Phys Eng Sci ; 476(2242): 20200508, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33223948

ABSTRACT

We develop and analyse the first second-order phase-field model to combine melting and dissolution in multi-component flows. This provides a simple and accurate way to simulate challenging phase-change problems in existing codes. Phase-field models simplify computation by describing separate regions using a smoothed phase field. The phase field eliminates the need for complicated discretizations that track the moving phase boundary. However, standard phase-field models are only first-order accurate. They often incur an error proportional to the thickness of the diffuse interface. We eliminate this dominant error by developing a general framework for asymptotic analysis of diffuse-interface methods in arbitrary geometries. With this framework, we can consistently unify previous second-order phase-field models of melting and dissolution and the volume-penalty method for fluid-solid interaction. We finally validate second-order convergence of our model in two comprehensive benchmark problems using the open-source spectral code Dedalus.

6.
Nat Phys ; 16(6): 695-700, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32514283

ABSTRACT

Jupiter's dynamics shapes its cloud patterns but remains largely unknown below this natural observational barrier. Unraveling the underlying three-dimensional flows is thus a primary goal for NASA's ongoing Juno mission that was launched in 2011. Here, we address the dynamics of large Jovian vortices using laboratory experiments complemented by theoretical and numerical analyses. We determine the generic force balance responsible for their three-dimensional pancake-like shape. From this, we define scaling laws for their horizontal and vertical aspect ratios as a function of the ambient rotation, stratification and zonal wind velocity. For the Great Red Spot in particular, our predicted horizontal dimensions agree well with measurements at the cloud level since the Voyager mission in 1979. We additionally predict the Great Red Spot's thickness, inaccessible to direct observation: it has surprisingly remained constant despite the observed horizontal shrinking. Our results now await comparison with upcoming Juno observations.

7.
Phys Rev Lett ; 120(24): 244505, 2018 Jun 15.
Article in English | MEDLINE | ID: mdl-29957013

ABSTRACT

We demonstrate via direct numerical simulations that a periodic, oscillating mean flow spontaneously develops from turbulently generated internal waves. We consider a minimal physical model where the fluid self-organizes in a convective layer adjacent to a stably stratified one. Internal waves are excited by turbulent convective motions, then nonlinearly interact to produce a mean flow reversing on timescales much longer than the waves' period. Our results demonstrate for the first time that the three-scale dynamics due to convection, waves, and mean flow is generic and hence can occur in many astrophysical and geophysical fluids. We discuss efforts to reproduce the mean flow in reduced models, where the turbulence is bypassed. We demonstrate that wave intermittency, resulting from the chaotic nature of convection, plays a key role in the mean-flow dynamics, which thus cannot be captured using only second-order statistics of the turbulent motions.

8.
Phys Rev Lett ; 119(3): 034502, 2017 Jul 21.
Article in English | MEDLINE | ID: mdl-28777612

ABSTRACT

The combination of elliptical deformation of streamlines and vorticity can lead to the destabilization of any rotating flow via the elliptical instability. Such a mechanism has been invoked as a possible source of turbulence in planetary cores subject to tidal deformations. The saturation of the elliptical instability has been shown to generate turbulence composed of nonlinearly interacting waves and strong columnar vortices with varying respective amplitudes, depending on the control parameters and geometry. In this Letter, we present a suite of numerical simulations to investigate the saturation and the transition from vortex-dominated to wave-dominated regimes. This is achieved by simulating the growth and saturation of the elliptical instability in an idealized triply periodic domain, adding a frictional damping to the geostrophic component only, to mimic its interaction with boundaries. We reproduce several experimental observations within one idealized local model and complement them by reaching more extreme flow parameters. In particular, a wave-dominated regime that exhibits many signatures of inertial wave turbulence is characterized for the first time. This regime is expected in planetary interiors.

SELECTION OF CITATIONS
SEARCH DETAIL
...