Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Epigenetics Chromatin ; 16(1): 19, 2023 05 19.
Article in English | MEDLINE | ID: mdl-37202802

ABSTRACT

BACKGROUND: Patients with balanced X-autosome translocations and premature ovarian insufficiency (POI) constitute an interesting paradigm to study the effect of chromosome repositioning. Their breakpoints are clustered within cytobands Xq13-Xq21, 80% of them in Xq21, and usually, no gene disruption can be associated with POI phenotype. As deletions within Xq21 do not cause POI, and since different breakpoints and translocations with different autosomes lead to this same gonadal phenotype, a "position effect" is hypothesized as a possible mechanism underlying POI pathogenesis. OBJECTIVE AND METHODS: To study the effect of the balanced X-autosome translocations that result in POI, we fine-mapped the breakpoints in six patients with POI and balanced X-autosome translocations and addressed gene expression and chromatin accessibility changes in four of them. RESULTS: We observed differential expression in 85 coding genes, associated with protein regulation, multicellular regulation, integrin signaling, and immune response pathways, and 120 differential peaks for the three interrogated histone marks, most of which were mapped in high-activity chromatin state regions. The integrative analysis between transcriptome and chromatin data pointed to 12 peaks mapped less than 2 Mb from 11 differentially expressed genes in genomic regions not related to the patients' chromosomal rearrangement, suggesting that translocations have broad effects on the chromatin structure. CONCLUSION: Since a wide impact on gene regulation was observed in patients, our results observed in this study support the hypothesis of position effect as a pathogenic mechanism for premature ovarian insufficiency associated with X-autosome translocations. This work emphasizes the relevance of chromatin changes in structural variation, since it advances our knowledge of the impact of perturbations in the regulatory landscape within interphase nuclei, resulting in the position effect pathogenicity.


Subject(s)
Primary Ovarian Insufficiency , Female , Humans , Primary Ovarian Insufficiency/genetics , Translocation, Genetic , Gene Expression Regulation , Gene Expression , Chromatin
2.
Chromosome Res ; 31(1): 10, 2023 02 24.
Article in English | MEDLINE | ID: mdl-36826604

ABSTRACT

Intrachromosomal rearrangements involve a single chromosome and can be formed by several proposed mechanisms. We reported two patients with intrachromosomal duplications and deletions, whose rearrangements and breakpoints were characterized through karyotyping, chromosomal microarray, fluorescence in situ hybridization, whole-genome sequencing, and Sanger sequencing. Inverted duplications associated with terminal deletions, known as inv-dup-del rearrangements, were found in 13q and 15q in these patients. The presence of microhomology at the junction points led to the proposal of the Fold-back mechanism for their formation. The use of different high-resolution techniques allowed for a better characterization of the rearrangements, with Sanger sequencing of the junction points being essential to infer the mechanisms of formation as it revealed microhomologies that were missed by the previous techniques. A karyotype-phenotype correlation was also performed for the characterized rearrangements.


Subject(s)
Chromosome Inversion , Gene Rearrangement , Humans , In Situ Hybridization, Fluorescence , Karyotyping , Karyotype
3.
Sleep Med Clin ; 18(4): 521-531, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38501524

ABSTRACT

Biological factors and mechanisms that drive sex differences observed in sleep disturbances are understudied and poorly understood. The extent to which sex chromosome constitution impacts on sex differences in circadian patterns is still a knowledge void in the sleep medicine field. Here we focus on the neurological consequences of X-chromosome functional imbalances between males and females and how this molecular inequality might affect sex divergencies on sleep. In light of the X-chromosome inactivation mechanism in females and its implications in gene regulation, we describe sleep-related neuronal circuits and brain regions impacted by sex-biased modulations of the transcriptome and the epigenome. Benefited from recent large-scale genetic studies on the interplay between X-chromosome and brain function, we list clinically relevant genes that might play a role in sex differences in neuronal pathways. Those molecular signatures are put into the context of sleep and sleep-associated neurological phenotypes, aiming to identify biological mechanisms that link X-chromosome gene regulation to sex-biased human traits. These findings are a significant step forward in understanding how X-linked genes manifest in sleep-associated transcriptional networks and point to future research opportunities to address female-specific clinical manifestations and therapeutic responses.


Subject(s)
X Chromosome Inactivation , X Chromosome , Female , Humans , Male , Phenotype
4.
Mol Genet Metab Rep ; 31: 100879, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35782622

ABSTRACT

Allan-Herndon-Dudley syndrome (AHDS) is characterized by neuropsychomotor developmental delay/intellectual disability, neurological impairment with a movement disorder, and an abnormal thyroid hormone profile. This disease is an X-linked disorder that mainly affects men. We described a female patient with a de novo variant in the SLC16A2 gene, a milder AHDS phenotype, and a skewed X chromosome inactivation profile. We discuss the mechanisms associated with the expression of the phenotypic characteristics in female patients, including SLC16A2 gene variants and cytogenomic alterations, as well as preferential inactivation of the normal X chromosome.

5.
Cytogenet Genome Res ; 162(1-2): 46-54, 2022.
Article in English | MEDLINE | ID: mdl-35290978

ABSTRACT

Langer-Giedion syndrome (LGS) is caused by a contiguous deletion at 8q23q24, characterized by exostoses, facial, ectodermal, and skeletal anomalies, and, occasionally, intellectual disability. LGS patients have been diagnosed clinically or by routine cytogenetic techniques, hampering the definition of an accurate genotype-phenotype correlation for the syndrome. We report two unrelated patients with 8q23q24 deletions, characterized by cytogenomic techniques, with one of them, to our knowledge, carrying the smallest deletion reported in classic LGS cases. We assessed the pathogenicity of the deletion of genes within the 8q23q24 region and reviewed other molecularly confirmed cases from the literature. Our findings suggest a 3.2-Mb critical region for a typical presentation of the syndrome, emphasizing the contribution of the TRPS1, RAD21, and EXT1 genes' haploinsufficiency, and facial dysmorphisms as well as bone anomalies as the most frequent features among patients with LGS. We also suggest a possible role for the CSMD3 gene, whose deletion seems to contribute to central nervous system anomalies. Since studies performing such correlation for LGS patients are limited, our data contribute to improving the ge-notype-phenotype characterization for LGS patients.


Subject(s)
Langer-Giedion Syndrome , Chromosome Deletion , Chromosomes, Human, Pair 8 , Comparative Genomic Hybridization , Genetic Association Studies , Haploinsufficiency , Humans , Langer-Giedion Syndrome/diagnosis , Langer-Giedion Syndrome/genetics , Phenotype , Repressor Proteins/genetics
6.
Am J Med Genet A ; 185(8): 2295-2305, 2021 08.
Article in English | MEDLINE | ID: mdl-33913603

ABSTRACT

Patients with unbalanced X-autosome translocations are rare and usually present a skewed X-chromosome inactivation (XCI) pattern, with the derivative chromosome being preferentially inactivated, and with a possible spread of XCI into the autosomal regions attached to it, which can inactivate autosomal genes and affect the patients' phenotype. We describe three patients carrying different unbalanced X-autosome translocations, confirmed by G-banding karyotype and array techniques. We analyzed their XCI pattern and inactivation spread into autosomal regions, through HUMARA, ZDHHC15 gene assay and the novel 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay, and identified an extremely skewed XCI pattern toward the derivative chromosomes for all the patients, and a variable pattern of late-replication on the autosomal regions of the derivative chromosomes. All patients showed phenotypical overlap with patients presenting deletions of the autosomal late-replicating regions, suggesting that the inactivation of autosomal segments may be responsible for their phenotype. Our data highlight the importance of the XCI spread into autosomal regions for establishing the clinical picture in patients carrying unbalanced X-autosome translocations, and the incorporation of EdU as a novel and precise tool to evaluate the inactivation status in such patients.


Subject(s)
Chromosome Disorders/diagnosis , Chromosome Disorders/genetics , Chromosomes , Genetic Association Studies , Phenotype , Translocation, Genetic , X Chromosome Inactivation , Comparative Genomic Hybridization , Cytogenetic Analysis , DNA Replication , DNA-Binding Proteins/genetics , Evolution, Molecular , Humans , In Situ Hybridization, Fluorescence , Receptors, Androgen/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...