Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; 87(2): 1123-36, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23135727

ABSTRACT

Permanent activation of the NF-κB pathway by the human T cell leukemia virus type 1 (HTLV-1) Tax (Tax1) viral transactivator is a key event in the process of HTLV-1-induced T lymphocyte immortalization and leukemogenesis. Although encoding a Tax transactivator (Tax2) that activates the canonical NF-κB pathway, HTLV-2 does not cause leukemia. These distinct pathological outcomes might be related, at least in part, to distinct NF-κB activation mechanisms. Tax1 has been shown to be both ubiquitinated and SUMOylated, and these two modifications were originally proposed to be required for Tax1-mediated NF-κB activation. Tax1 ubiquitination allows recruitment of the IKK-γ/NEMO regulatory subunit of the IKK complex together with Tax1 into centrosome/Golgi-associated cytoplasmic structures, followed by activation of the IKK complex and RelA/p65 nuclear translocation. Herein, we compared the ubiquitination, SUMOylation, and acetylation patterns of Tax2 and Tax1. We show that, in contrast to Tax1, Tax2 conjugation to endogenous ubiquitin and SUMO is barely detectable while both proteins are acetylated. Importantly, Tax2 is neither polyubiquitinated on lysine residues nor ubiquitinated on its N-terminal residue. Consistent with these observations, Tax2 conjugation to ubiquitin and Tax2-mediated NF-κB activation is not affected by overexpression of the E2 conjugating enzyme Ubc13. We further demonstrate that a nonubiquitinable, non-SUMOylable, and nonacetylable Tax2 mutant retains a significant ability to activate transcription from a NF-κB-dependent promoter after partial activation of the IKK complex and induction of RelA/p65 nuclear translocation. Finally, we also show that Tax2 does not interact with TRAF6, a protein that was shown to positively regulate Tax1-mediated activation of the NF-κB pathway.


Subject(s)
Gene Products, tax/metabolism , Human T-lymphotropic virus 2/pathogenicity , NF-kappa B/metabolism , Small Ubiquitin-Related Modifier Proteins/metabolism , Sumoylation , Ubiquitin/metabolism , Acetylation , HeLa Cells , Humans , Jurkat Cells , Protein Processing, Post-Translational
2.
J Virol ; 82(16): 7913-22, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18495761

ABSTRACT

The human T-cell leukemia virus type 1 (HTLV-1) Tax transactivator is known to induce or repress various cellular genes, several of them encoding transcription factors. As Tax is known to deregulate various basic bHLH factors, we looked more specifically at its effect on TAL1 (T-cell acute lymphoblastic leukemia 1), also known as SCL (stem cell leukemia). Indeed, TAL1 is deregulated in a high percentage of T-cell acute lymphoblastic leukemia cells, and its oncogenic properties are well-established. Here we show that Tax induces transcription of this proto-oncogene by stimulating the activity of the TAL1 gene promoter 1b, through both the CREB and NF-kappaB pathways. It was also observed that TAL1 upregulates HTLV-1 promoter activity, in either the presence or the absence of Tax. The viral promoter is inhibited in trans by expression of the E2A protein E47, and TAL1 is able to abrogate this inhibition. These data show the existence of a positive feedback loop between Tax and TAL1 expression and support the notion that this proto-oncogene participates in generation of adult T-cell leukemia/lymphoma by increasing the amount of the Tax oncoprotein but also possibly by its own transforming activities.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Gene Expression Regulation, Viral , Gene Products, tax/metabolism , Human T-lymphotropic virus 1/metabolism , Leukemia-Lymphoma, Adult T-Cell/virology , Proto-Oncogene Proteins/metabolism , Binding Sites , Cell Line , Feedback, Physiological , HeLa Cells , Humans , Models, Biological , NF-kappa B/metabolism , Promoter Regions, Genetic , Proto-Oncogene Mas , T-Cell Acute Lymphocytic Leukemia Protein 1 , Thymus Gland/cytology
3.
J Virol ; 79(7): 4229-37, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15767424

ABSTRACT

Several viral proteins expressed by DNA or RNA transforming viruses have the particular property of binding via their C-terminal end to various cellular proteins with PDZ domains. This study is focused on the PDZ protein TIP-2/GIPC, which was originally identified in two-hybrid screens performed with two different baits: the human T-cell leukemia virus type 1 Tax oncoprotein and the regulator of G signaling RGS-GAIP. Further studies have shown that TIP-2/GIPC is also able to associate with the cytoplasmic domains of various transmembrane proteins. In this report we show that TIP-2/GIPC interacts with the E6 protein of human papillomavirus type 18 (HPV-18). This event triggers polyubiquitination and proteasome-mediated degradation of the cellular protein. In agreement with this observation, silencing of E6 by RNA interference in HeLa cells causes an increase in the intracellular TIP-2/GIPC level. This PDZ protein has been previously found to be involved in transforming growth factor beta (TGF-beta) signaling by favoring expression of the TGF-beta type III receptor at the cell membrane. In line with this activity of TIP-2/GIPC, we observed that depletion of this protein in HeLa cells hampers induction of the Id3 gene by TGF-beta treatment and also diminishes the antiproliferative effect of this cytokine. Conversely, silencing of E6 increases the expression of Id3 and blocks proliferation of HeLa cells. These results support the notion that HPV-18 E6 renders cells less sensitive to the cytostatic effect of TGF-beta by lowering the intracellular amount of TIP-2/GIPC.


Subject(s)
Carrier Proteins/metabolism , DNA-Binding Proteins/metabolism , Neuropeptides/metabolism , Oncogene Proteins, Viral/metabolism , Papillomaviridae/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Interaction Mapping , Signal Transduction , Transforming Growth Factor beta/metabolism , Adaptor Proteins, Signal Transducing , Animals , COS Cells , Cell Line , Cell Proliferation , Gene Silencing , HeLa Cells , Humans , Protein Binding , Protein Structure, Tertiary , RNA Interference , RNA, Small Interfering , Transforming Growth Factor beta/antagonists & inhibitors , Ubiquitin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...