Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Int Immunopharmacol ; 134: 112118, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38705029

ABSTRACT

This study aims to explore the protective machinery of pegylated polymeric micelles of boswellic acid-selenium (PMBS) against secondary neuronal damage triggered by mild repetitive traumatic brain injury (RTBI). After PMBS characterization in terms of particle size, size distribution, zeta potential, and transmission electronic microscopy, the selected formula was used to investigate its potency against experimental RTBI. Five groups of rats were used; group 1 (control) and the other four groups were subjected to RTBI. Groups 2 was RTBI positive control, while 3, 4, and 5 received boswellic acid (BSA), selenium (SEL), and PMBS, respectively. The open-field behavioral test was used for behavioral assessment. Subsequently, brain tissues were utilized for hematoxylin and eosin staining, Nissl staining, Western blotting, and ELISA in addition to evaluating microRNA expression (miR-155 and miR-146a). The behavioral changes, oxidative stress, and neuroinflammation triggered by RTBI were all improved by PMBS. Moreover, PMBS mitigated excessive glutamate-induced excitotoxicity and the dysregulation in miR-155 and miR-146a expression. Besides, connexin43 (Cx43) expression as well as klotho and brain-derived neurotrophic factor (BDNF) were upregulated with diminished neuronal cell death and apoptosis because of reduced Forkhead Box class O3a(Foxo3a) expression in the PMBS-treated group. The current study has provided evidence of the benefits produced by incorporating BSA and SEL in PEGylated polymeric micelles formula. PMBS is a promising therapy for RTBI. Its beneficial effects are attributed to the manipulation of many pathways, including the regulation of miR-155 and miR-146a expression, as well as the BDNF /Klotho/Foxo3a signaling pathway.


Subject(s)
Brain-Derived Neurotrophic Factor , Forkhead Box Protein O3 , Klotho Proteins , Micelles , MicroRNAs , Polyethylene Glycols , Selenium , Triterpenes , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Forkhead Box Protein O3/metabolism , Forkhead Box Protein O3/genetics , Male , Rats , Selenium/chemistry , Triterpenes/pharmacology , Triterpenes/therapeutic use , Signal Transduction/drug effects , Rats, Sprague-Dawley , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Disease Models, Animal , Oxidative Stress/drug effects , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/metabolism , Brain/drug effects , Brain/metabolism , Brain/pathology , Polymers/chemistry
2.
Molecules ; 28(16)2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37630419

ABSTRACT

Bottle gourd (BG) oil (family Cucurbitaceae) has several pharmacological activities including a reduction of the hazard of cardiovascular and atherosclerosis conditions. This work aimed to develop and optimize self-dispersing lipid formulations (SDLFs) of BG oil by applying a full 32 factorial design. The formulation variables (oil concentration and surfactant mixture ratio) showed an obvious impact on the characters of the prepared BG-SDLFs including droplet size (DS), polydispersity index (PDI), emulsification time (ET), and transmission percentage (Tr%). The optimum BG-SDLF composed of 30% oil and Tween 80/Cremophor® RH40 (1:1) showed good emulsification characteristics and a better drug release profile compared with BG oil. In vivo study in isoproterenol-injected rats showed that BG oil and the optimized BG-SDLF improved cardiac function, by elevating the miRNA-23a gene expression level and decreasing miRNA-21 gene expression. They also caused the inhibition of the plasma B-type natriuretic peptide (BNP), N-terminal proatrial natriuretic peptide (NT-pro-BNP), cystatin c, galectin-3, lipoprotein-associated phospholipase A2 (Lp-PLA2), matrix metallopeptidase 2 (MMP2), cardiac troponin I (cTnI), and cardiac troponin T (cTnT). Our study demonstrated that BG oil and the optimized BG-SDLF provided a cardioprotection against isoproterenol-induced cardiac toxicity with better results in groups treated with the optimized BG-SDLF.


Subject(s)
Cucurbita , MicroRNAs , Animals , Rats , Isoproterenol/toxicity , Matrix Metalloproteinase 2/genetics , Cardiotoxicity , Excipients , Endopeptidases , Lipids , MicroRNAs/genetics
3.
Int J Pharm ; 634: 122666, 2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36736674

ABSTRACT

Gastric ulcer is a common gastrointestinal ailment that affects many people worldwide. NSAIDs induced ulcers are the second most common etiology of gastric ulcers. Coconut oil has well-known potential anti-ulcerogenic characteristics. This work aimed to develop and optimize diclofenac potassium (a highly used model drug of NSAIDs) as self-nanoemulsifying delivery system containing coconut oil (DFP-COSNEDS) to overcome its ulcerogenic effect. A mixture design was applied for formula optimization and investigation of the effect of different formulation factors on the droplet size (DS) and polydispersity index (PDI) of the prepared DFP-COSNEDS. The optimized formulae showed good self-emulsification characters and better drug dissolution compared with the drug suspension. The ulcer protection was assessed in-vivo using 7 groups of adult male Wistar rats. Oxidative stress parameters (MDA, GSH, and SOD), inflammatory mediators (PGE-2, TNF-α, and IL-6) and peroxisome proliferator-activated receptor-γ (PPAR-γ) gene expression were measured. The results revealed that pure coconut oil and DFP-COSNEDS containing 25 % of coconut oil showed close figures to normal group and better values than famotidine (FAM) group. In conclusion, coconut oil showed high potential for gastric-protection activity against DFP induced ulcer. DFP-COSNEDS offers dual benefits of improving DFP dissolution and alleviating its ulcerogenic effect.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Nanoparticles , Rats , Animals , Male , Pharmaceutical Preparations , Coconut Oil , Drug Delivery Systems/methods , Surface-Active Agents , Nanoparticle Drug Delivery System , Rats, Wistar , Emulsions , Solubility , Particle Size , Biological Availability
4.
Biomed Pharmacother ; 145: 112122, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34489150

ABSTRACT

OBJECTIVE: Berberine (BBR) is a known alkaloid that has verified its protective effects against ischemia/reperfusion (I/RN) lesion in multiple organs but its poor oral bioavailability limited its use. Despite the previous works, its possible impact on the warm hepatic I/RN-induced lesion is not clear. Accordingly, a nanostructured lipid carrier of BBR (NLC BBR) was developed for enhancing its efficiency and to inspect its protective mechanistic against warm hepatic I/RN. METHODS: NLC BBR formula was evaluated pharmaceutically. Wistar rats were orally pre-treated with either BBR or NLC BBR (100 mg/kg) for 2 weeks followed by hepatic I/RN (30 min/24 h). Biochemical, ELISA, qPCR, western blot, histopathological, and immunohistochemical studies were performed. KEY FINDINGS: Optimized NLC BBR was prepared with a particle size of 130 ± 8.3 nm. NLC BBR divulged its aptitude to safeguard the hepatic tissues partly due to anti-inflammatory capacity through downsizing the HMGB1/TLR4/NF-κB trajectory with concomitant rebating of TNF-α, iNOS, COX-2, and MPO content. Furthermore, NLC BBR antiapoptotic trait was confirmed by boosting the prosurvival protein (Bcl-2) and cutting down the pro-apoptotic marker (Bax). Moreover, its antioxidant nature was confirmed by TAC uplifting besides MDA subsiding. On the other hand, NLC BBR action embroiled autophagy flux spiking merit exemplified in Beclin-1 and LC3-II enhancement. Finally, NLC BBR administration ascertained its hepatocyte guarding action by recovering the histopathological ailment and diminishing serum transaminases. CONCLUSION: NLC BBR purveyed reasonable shielding mechanisms and subsided incidents contemporaneous to warm hepatic I/RN lesion in part, by moderating HMGB1/TLR4/NF-κB inflammatory signaling, autophagy, and apoptosis.


Subject(s)
Berberine/pharmacology , Liver Diseases/drug therapy , Nanostructures , Reperfusion Injury/drug therapy , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/pharmacology , Apoptosis/drug effects , Autophagy/drug effects , Berberine/administration & dosage , Drug Carriers/chemistry , HMGB1 Protein/metabolism , Lipids/chemistry , Liver Diseases/pathology , Male , NF-kappa B/metabolism , Particle Size , Rats , Rats, Wistar , Reperfusion Injury/pathology , Signal Transduction/drug effects , Toll-Like Receptor 4/metabolism
5.
Molecules ; 26(18)2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34577079

ABSTRACT

Antimicrobial resistance is a dramatic global threat; however, the slow progress of new antibiotic development has impeded the identification of viable alternative strategies. Natural antioxidant-based antibacterial approaches may provide potent therapeutic abilities to effectively block resistance microbes' pathways. While essential oils (EOs) have been reported as antimicrobial agents, its application is still limited ascribed to its low solubility and stability characters; additionally, the related biomolecular mechanisms are not fully understood. Hence, the study aimed to develop a nano-gel natural preparation with multiple molecular mechanisms that could combat bacterial resistance in an acne vulgaris model. A nano-emulgel of thyme/clove EOs (NEG8) was designed, standardized, and its antimicrobial activity was screened in vitro and in vivo against genetically identified skin bacterial clinical isolates (Pseudomonas stutzeri, Enterococcus faecium and Bacillus thuringiensis). As per our findings, NEG8 exhibited bacteriostatic and potent biofilm inhibition activities. An in vivo model was also established using the commercially available therapeutic, adapalene in contra genetically identified microorganism. Improvement in rat behavior was reported for the first time and NEG8 abated the dermal contents/protein expression of IGF-1, TGF-ß/collagen, Wnt/ß-catenin, JAK2/STAT-3, NE, 5-HT, and the inflammatory markers; p(Ser536) NF-κBp65, TLR-2, and IL-6. Moreover, the level of dopamine, protective anti-inflammatory cytokine, IL-10 and PPAR-γ protein were enhanced, also the skin histological structures were improved. Thus, NEG8 could be a future potential topical clinical alternate to synthetic agents, with dual merit mechanism as bacteriostatic antibiotic action and non-antibiotic microbial pathway inhibitor.


Subject(s)
Acne Vulgaris/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Behavior, Animal/drug effects , Plant Extracts/pharmacology , Polyethylene Glycols/pharmacology , Polyethyleneimine/pharmacology , Skin/drug effects , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/therapeutic use , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Biofilms/drug effects , Cues , Forkhead Transcription Factors/metabolism , Insulin-Like Growth Factor I/metabolism , Interleukin-6/metabolism , NF-kappa B/metabolism , Nanogels/chemistry , Nanogels/therapeutic use , PPAR gamma/metabolism , Plant Extracts/chemistry , Plant Extracts/therapeutic use , Polyethylene Glycols/chemistry , Polyethylene Glycols/therapeutic use , Polyethyleneimine/chemistry , Polyethyleneimine/therapeutic use , Rats , Skin/metabolism , Syzygium/chemistry , Thymus Plant/chemistry , Toll-Like Receptor 2/metabolism , Transforming Growth Factor beta/metabolism , Wnt Proteins/metabolism
6.
AAPS PharmSciTech ; 22(1): 33, 2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33404930

ABSTRACT

Onychomycosis is considered a stubborn nail fungal infection that does not respond to conventional topical antifungal treatments. This study aimed to develop and characterize novel solid lipid nanoparticles (SLNs) formulae containing terbinafine HCl (TFH) and loaded with different nail penetration enhancers (nPEs). Three (nPEs) N-acetyl-L-cysteine, thioglycolic acid, and thiourea were used. Characterization of the prepared formulae was done regarding particle size, zeta potential, polydispersity index (PDI), entrapment efficiency (EE%), physical stability, in vitro release study, infrared (FT-IR), and their morphological structures. The selected formulae and the marketed cream Lamifen® were compared in terms of their antifungal activity against Trichophyton rubrum as well as their nail hydration and their drug uptake by the nail clippers. Thiourea was the nPE of choice; formulae (N2 and N8), with thiourea, were considered the optimum TFH SLNs containing nPEs. They were selected for their optimum particle size of 426.3 ± 10.18 and 450.8 ± 11.45 nm as well as their highest EE% of 89.76 ± 1.25 and 90.35 ± 1.33, respectively. The in vitro microbiological screening of the antifungal activity of these two formulae showed significantly larger zones of inhibition in comparison with the marketed product. The ex vivo screening of the drug uptake of the two selected formulae was significantly higher than that of the marketed product. The nPE formulae present a very promising option as they showed optimum physicochemical characterization with high antifungal activity and high drug uptake as well as good nail hydration effect.


Subject(s)
Antifungal Agents/therapeutic use , Lipids/chemistry , Nails/metabolism , Nanoparticles/chemistry , Onychomycosis/drug therapy , Terbinafine/therapeutic use , Administration, Topical , Antifungal Agents/administration & dosage , Antifungal Agents/pharmacokinetics , Arthrodermataceae , Humans , Naphthalenes/chemistry , Onychomycosis/microbiology , Pharmaceutical Preparations , Spectroscopy, Fourier Transform Infrared , Terbinafine/administration & dosage , Terbinafine/pharmacokinetics
7.
RSC Adv ; 11(13): 7318-7330, 2021 02 10.
Article in English | MEDLINE | ID: mdl-35423273

ABSTRACT

Mentha species are medicinally used worldwide and remain attractive for research due to the diversity of their phytoconstituents and large therapeutic indices for various ailments. This study used the metabolomics examination of five Mentha species (M. suaveolens, M. sylvestris, M. piperita, M. longifolia, and M. viridis) to justify their cytotoxicity and their anti-Helicobacter effects. The activities of species were correlated with their phytochemical profiles by orthogonal partial least square discriminant analysis (OPLS-DA). Tentatively characterized phytoconstituents using liquid chromatography high-resolution electrospray ionization mass spectrometry (LC-HR-ESI-MS) included 49 compounds: 14 flavonoids, 10 caffeic acid esters, 7 phenolic acids, and other constituents. M. piperita showed the highest cytotoxicity to HepG2 (human hepatoma), MCF-7 (human breast adenocarcinoma), and CACO2 (human colon adenocarcinoma) cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. OPLS-DA and dereplication studies predicted that the cytotoxic activity was related to benzyl glucopyranoside-sulfate, a lignin glycoside. Furthermore, M. viridis was effective in suppressing the growth of Helicobacter pylori at a concentration of 50 mg mL-1. OPLS-DA predicted that this activity was related to a dihydroxytrimethoxyflavone. M. viridis extract was formulated with Pluronic® F127 to develop polymeric micelles as a nanocarrier that enhanced the anti-Helicobacter activity of the extract and provided minimum inhibitory concentrations and minimum bactericidal concentrations of 6.5 and 50 mg mL-1, respectively. This activity was also correlated to tentatively identified constituents, including rosmarinic acid, catechins, carvone, and piperitone oxide.

SELECTION OF CITATIONS
SEARCH DETAIL
...