Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 6(1): 159-171, 2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33458468

ABSTRACT

This study aimed to produce activated biochars (BCs) from Moroccan algae residue (AG) and olive pomace (OP) using mechanochemical activation with NaOH and ball milling (BM) for treating artificial textile wastewater containing methylene blue (MeB). The produced OP-activated BC by BM showed the highest absolute value of ζ-potential (-59.7 mV) and high removal efficiency of MeB compared to other activated BCs. The nonlinear pseudo-first-order kinetic model was the most suitable model to describe the kinetics of adsorption of MeB onto biochars produced from AG and the NaOH-activated BC from OP, whereas the nonlinear pseudo-second-order kinetic model suits the OP raw biochar and BM-activated BC. The nonlinear Langmuir isotherm model was the most suitable model for describing MeB adsorption onto BCs, compared to the nonlinear Freundlich isotherm model. The maximum adsorption capacities of AG-activated BCs with NaOH and BM were 13.1 and 9.1 mg/g, respectively, while those of OP-activated BCs were 2.6 and 31.8 mg/g, respectively. The thermodynamic study indicates the spontaneous and endothermic nature of the adsorption process of most activated BCs. In addition, ΔS° values indicate the increase of randomness at the solid-liquid interface during MeB sorption onto BC.

2.
J Environ Manage ; 279: 111632, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33309111

ABSTRACT

After press separation of the liquid and solid digestate from an agricultural biogas plant, pyrolysis of solid anaerobic digestate was carried out (i.e., at 500 °C, 1h, and 10 °C/min) to produce biochar (37.6 wt%), bio-oil (33.7 wt%) and syngas (29.3 wt%). The organic phase of bio-oil and syngas exhibited high and low heating values of 28.4 MJ/kg and 12.9 MJ/Nm3, respectively. Then, the synergy of coupling biochar with liquid digestate for agronomic purposes was investigated by leaching experiment and growth plant tests on wheat. Leaching experiments using combination of liquid digestate (170 kg N/ha) and biochar demonstrated that biochar addition increases the cumulative leaching of all nutrients, except nitrate, that have a significant decrease of 82% and 91%, respectively at 50 and 100 t/ha, compared to soil treated only with liquid digestate. The co-application of biochar with liquid digestate on growth wheat plant tests demonstrated that biochar application at 50 t/ha did not exhibit a negative impact on the relative seed germination and improved aerial dry biomass production (up to 27.5%) compared to soil with only liquid digestate addition.


Subject(s)
Pyrolysis , Soil , Agriculture , Anaerobiosis , Biomass , Charcoal
SELECTION OF CITATIONS
SEARCH DETAIL
...