Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(25): 22361-22381, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37396246

ABSTRACT

A carbon nitride (C3N4) nanomaterial has superior mechanical, thermal, and tribological properties, which make them attractive for various applications, including corrosion-resistant coatings. In this research, newly synthesized C3N4 nanocapsules with different concentrations (0.5, 1.0, and 2.0 wt %) of ZnO as a dopant were incorporated into the NiP coating using an electroless deposition technique. The nanocomposite coatings either ZnO-doped (NiP-C3N4/ZnO) or undoped (NiP-C3N4) were heat-treated at 400 °C for 1 h. The as-plated and heat-treated (HT) nanocomposite coatings were characterized by their morphology, phases, roughness, wettability, hardness, corrosion protection, and antibacterial properties. The results indicated that the microhardness of as-plated and heat-treated nanocomposite coatings was significantly improved after the incorporation of 0.5 wt % ZnO-doped C3N4 nanocapsules. The outcomes of electrochemical studies revealed that the corrosion resistance of the HT coatings is higher than the corresponding as-plated ones. The highest corrosion resistance is achieved on the heat-treated NiP-C3N4/1.0 wt % ZnO coatings. Although the presence of ZnO in the C3N4 nanocapsules increased its surface area and porosity, the C3N4/ZnO nanocapsules prevented localized corrosion by filling the microdefects and pores of the NiP matrix. Furthermore, the colony-counting method used to evaluate the antibacterial behavior of the different coatings demonstrated superior antibacterial properties, namely, after heat treatment. Therefore, the novel perspective C3N4/ZnO nanocapsules can be utilized as a reinforcement nanomaterial in improving the mechanical and anticorrosion performance of NiP coatings in chloride media, together with providing superior antibacterial properties.

2.
ACS Appl Mater Interfaces ; 13(43): 51459-51473, 2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34674522

ABSTRACT

Smart polymeric composite coatings demonstrating multilevel self-healing characteristics were developed and characterized. The pH-responsive smart carriers were synthesized by loading halloysite nanotubes (HNTs) with the benzotriazole corrosion inhibitor (BTA) using the vacuum cycling method, referred to as (BTA-loaded HNTs). Similarly, mechanically triggered melamine urea-formaldehyde microcapsules encapsulated with the boiled linseed oil-self-healing agent (LO) denoted as (MUFMCs) having an average size of a ∼120 µm diameter with a wall thickness of ∼1.84 µm were synthesized by the in situ polymerization technique. The newly designed double-layered smart polymeric composite coatings (DLPCs) were developed by mixing 3 wt % BTA-loaded HNTs with epoxy and applying it on the clean steel substrate to form a primer layer. After its complete curing, a top layer of epoxy containing 5 wt % of MUFMCs was deposited on it. For an exact comparison, single-layer polymeric composite coatings (SLPCs) containing 3 wt % BTA-loaded HNTs were also developed. The Fourier transform infrared radiation spectra of MUFMCs and BTA-loaded HNTs indicate the existence of all desired functional groups, confirming the presence of loaded chemical species such as LO and BTA into the smart carriers. Thermogravimetric analysis (TGA) indicates that ∼18% BTA is successfully loaded into HNTs. Quantitative UV-spectroscopic analysis indicates a pH-responsive release of BTA from BTA-loaded HNTs, which is time-dependent, attaining its maximum value of ∼ 90% in an acidic medium after 30 h. Electrochemical impedance spectroscopy analysis conducted in 3.5 wt % NaCl solution at room temperature for different immersion times reveals that SLPC exhibits the maximum charge-transfer resistance (Rct) of 55.47 GΩ cm2 after the 7th day of immersion, and then, a declining trend is observed, reaching 26.6 GΩ cm2 after the 9th day. However, in the case of DLPC, the Rct values show a continuous increment, attaining a maximum value of 82.11 GΩ cm2 after the 9th day of immersion. The improved performance of DLPC can be ascribed to the efficient triggering of the individual carriers in the isolated matrices, resulting in the release of LO and BTA to form individual protective films at the damaged area due to the oxidative polymerization process and triazoles' ability of passive film formation on the substrate, respectively. The tempting self-healing properties of DLPCs justify their decent role for long-term corrosion protection in many industrial applications.

3.
Polymers (Basel) ; 13(10)2021 May 17.
Article in English | MEDLINE | ID: mdl-34067528

ABSTRACT

This work focuses on the synthesis and characterization of polymeric smart self-healing coatings. A comparison of structural, thermal, and self-healing properties of two different polymeric coatings comprising distinct self-healing agents (tung oil and linalyl acetate) is studied to elucidate the role of self-healing agents in corrosion protection. Towards this direction, urea-formaldehyde microcapsules (UFMCs) loaded with tung oil (TMMCs) and linalyl acetate (LMMCs) were synthesized using the in-situ polymerization method. The synthesis of both LMMCs and TMMCs under identical experimental conditions (900 rpm, 55 °C) has resulted in a similar average particle size range (63-125 µm). The polymeric smart self-healing coatings were developed by reinforcing a polymeric matrix separately with a fixed amount of LMMCs (3 wt.% and 5 wt.%), and TMMCs (3 wt.% and 5 wt.%) referred to as LMCOATs and TMCOATs, respectively. The development of smart coatings (LMCOATs and TMCOATs) contributes to achieving decent thermal stability up to 450 °C. Electrochemical impedance spectroscopy (EIS) analysis indicates that the corrosion resistance of smart coatings increases with increasing concentration of the microcapsules (TMMCs, LMMCs) in the epoxy matrix reaching ~1 GΩ. As a comparison, LMCOATs containing 5 wt.% LMMCs demonstrate the best stability in the barrier properties than other developed coatings and can be considered for many potential applications.

4.
Nanomaterials (Basel) ; 10(10)2020 Sep 27.
Article in English | MEDLINE | ID: mdl-32992628

ABSTRACT

Corrosion and heat treatment studies are essential to predict the performance and sustainability of the coatings in harsh environments, such as the oil and gas industries. In this study, nickel phosphorus (NiP)-titanium (Ti) nanocomposite coatings (NiP-Ti nanoparticles (TNPs)), containing various concentrations of Ti nanoparticles (TNPs) were deposited on high strength low alloy (HSLA) steel through electroless deposition processing. The concentrations of 0.25, 0.50 and 1.0 g/L TNPs were dispersed in the electroless bath, to obtain NiP-TNPs nanocomposite coatings comprising different Ti contents. Further, the effect of TNPs on the structural, mechanical, corrosion, and heat treatment performance of NiP coatings was thoroughly studied to illustrate the role of TNPs into the NiP matrix. Field emission scanning electron microscope (FESEM) and energy dispersive spectroscopy (EDX) results confirm the successful incorporation of TNPs into the NiP matrix. A substantial improvement in the mechanical response of the NiP matrix was noticed with an increasing amount of TNPs, which reached to its ultimate values (hardness 675 Hv, modulus of elasticity 18.26 GPa, and stiffness 9.02 kN/m) at NiP-0.5TNPs coatings composition. Likewise, the electrochemical impedance spectroscopy measurements confirmed a tremendous increase in the corrosion inhibition efficiency of the NiP coatings with an increasing amount of TNPs, reaching ~96.4% at a composition of NiP-0.5TNPs. In addition, the NiP-TNPs nanocomposite coatings also unveiled better performance after heat treatment than NiP coatings, due to the presence of TNPs into the NiP matrix and the formation of more stable (heat resistant) phases, such as Ni3P, Ni3Ti, NiO, etc., during the subsequent processing.

5.
Nanomaterials (Basel) ; 10(4)2020 Apr 20.
Article in English | MEDLINE | ID: mdl-32326038

ABSTRACT

The utilization of self-healing cerium dioxide nanoparticles (CeO2), modified with organic corrosion inhibitors (dodecylamine (DDA) and n-methylthiourea (NMTU)), in epoxy coating is an efficient strategy for enhancing the protection of the epoxy coating and increasing its lifetime. Fourier transform infrared (FTIR) spectroscopy analysis was used to confirm the loading and presence of inhibitors in the nanoparticles. Thermal gravimetric analysis (TGA) measurement studies revealed the amount of 25% and 29.75% w/w for NMTU and DDA in the nanoparticles, respectively. The pH sensitive and self-release behavior of modified CeO2 nanoparticles is confirmed through UV-vis spectroscopy and Zeta potential. It was observed, through scanning electron microscopy (SEM), that a protective layer had been formed on the defect site separating the steel surface from the external environment and healed the artificially created scratch. This protective film played a vital role in the corrosion inhibition of steel by preventing the aggressiveness of Cl- in the solution. Electrochemical impedance spectroscopy (EIS) measurements exhibited the exceptional corrosion inhibition efficiency, reaching 99.8% and 95.7% for the modified coating with DDA and NMTU, respectively, after five days of immersion time.

6.
Sci Rep ; 9(1): 2319, 2019 Feb 19.
Article in English | MEDLINE | ID: mdl-30783184

ABSTRACT

The impact of AEO7 surfactant on the corrosion inhibition of carbon steel (C-steel) in 0.5 M HCl solution at temperatures between 20 °C and 50 °C was elucidated using weight loss and different electrochemical techniques. The kinetics and thermodynamic parameters of the corrosion and inhibition processes were reported. The corrosion inhibition efficiency (IE%) improved as the concentration of AEO7 increased. In addition, a synergistic effect was observed when a concentration of 1 × 10-3 mol L-1 or higher of potassium iodide (KI) was added to 40 µmol L-1 of the AEO7 inhibitor where the corrosion IE% increased from 87.4% to 99.2%. Also, it was found that the adsorption of AEO7 surfactant on C-steel surface followed the Freundlich isotherm. Furthermore, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements indicated that AEO7 was physically adsorbed on the steel surface. The surface topography was examined using an optical profilometer, an atomic force microscope (AFM), and a scanning electron-microscope (SEM) coupled with an energy dispersion X-ray (EDX) unit. Quantum chemical calculations based on the density functional theory were performed to understand the relationship between the corrosion IE% and the molecular structure of the AEO7 molecule.

7.
Carbohydr Polym ; 151: 871-878, 2016 Oct 20.
Article in English | MEDLINE | ID: mdl-27474635

ABSTRACT

An anticorrosion coating film based on the formation of nanocomposite coating is reported in this study. The composite consisted of chitosan (green matrix), oleic acid, and graphene oxide (nano filler). The nanocomposite coating was arranged on the surface of carbon steel, and the corrosion resistance was monitored using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PP). Compared to the pure chitosan (CS) coating, the corrosion resistance of oleic acid-modified chitosan/graphene oxide film (CS/GO-OA) is increased by 100 folds. Since the well-dispersed smart grafted nanolayers delayed the penetration rate of corrosive species and thus maintained long term anticorrosive stability which is correlated with hydrophobicity and permeability.


Subject(s)
Graphite/chemistry , Oleic Acid/chemistry , Steel/chemistry , Corrosion , Industry , Permeability , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...