Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Mech Behav Biomed Mater ; 139: 105665, 2023 03.
Article in English | MEDLINE | ID: mdl-36640542

ABSTRACT

Reproducing both the mechanical and biological performance of native blood vessels remains an ongoing challenge in vascular tissue engineering. Additive-lathe printing offers an attractive method of fabricating long tubular constructs as a potential vascular graft for the treatment of cardiovascular diseases. Printing hydrogels onto rotating horizontal mandrels often leads to sagging, resulting in poor and variable mechanical properties. In this study, an additive-lathe printing system with a vertical mandrel to fabricate tubular constructs is presented. Various concentrations of gelatin methacryloyl (gelMA) hydrogel were used to print grafts on the rotating mandrel in a helical pattern. The printing parameters were selected to achieve the bonding of consecutive gelMA filaments to improve the quality of the printed graft. The hydrogel filaments were fused properly under the action of gravity on the vertical mandrel. Thus, the vertical additive-lathe printing system was used to print uniform wall thickness grafts, eliminating the hydrogel sagging problem. Tensile testing performed in both circumferential and longitudinal direction revealed that the anisotropic properties of printed gelMA constructs were similar to those observed in the native blood vessels. In addition, no leakage was detected through the walls of the gelMA grafts during burst pressure measurement. Therefore, the current printing setup could be utilized to print vascular grafts for the treatment of cardiovascular diseases.


Subject(s)
Bioprinting , Cardiovascular Diseases , Humans , Tissue Scaffolds , Hydrogels , Printing, Three-Dimensional , Bioprinting/methods , Tissue Engineering/methods , Gelatin , Methacrylates
2.
Med Eng Phys ; 94: 52-60, 2021 08.
Article in English | MEDLINE | ID: mdl-34303502

ABSTRACT

There is a high demand for small diameter vascular grafts having mechanical and biological properties similar to that of living tissues. Tissue-engineered vascular grafts using current methods have often failed due to the mismatch of mechanical properties between the implanted graft and living tissues. To address this limitation, a hybrid bioprinting-electrospinning system is developed for vascular tissue engineering applications. The setup is capable of producing layered structure from electrospun fibres and cell-laden hydrogel. A Creality3D Ender 3D printer has been modified into a hybrid setup having one bioprinting head and two electrospinning heads. Fortus 250mc and Flashforge Creator Pro 3D printers were used to print parts using acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) polymers. An Arduino mega 2560 and a Ramps 1.4 controller board were selected to control the functions of the hybrid bioprinting setup. The setup was tested successfully to print a tubular construct around a rotating needle.


Subject(s)
Bioprinting , Hydrogels , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds
3.
Med Eng Phys ; 92: 80-87, 2021 06.
Article in English | MEDLINE | ID: mdl-34167715

ABSTRACT

This technical note provides a step-by-step guide for the design and construction of a temperature-controlled nozzle-free electrospinning device. The equipment uses a rotating mandrel partially immersed within a polymer solution to produce fibers in an upward motion by inducing the formation of multiple Taylor cones and subsequently multi-jetting out of an electrified open surface. Free-surface electrospinning can overcome limitations and drawbacks associated with single and multi-nozzle spinneret configurations, such as low yield, limited production capacity, nonuniform electric field distribution, and clogging. Most importantly, this lab-scaled high-throughput device can provide an alternative economical route for needleless electrospinning research, in contrast to the high costs associated with industrially available upscaling equipment. Among the device's technical specifications, a key feature is a cryo-collector mandrel, capable of collecting fibers in sub-zero temperatures, which can induce ultra-porous nanostructures, wider pores, and subsequent in-depth penetration of cells. A multi-channel gas chamber allows the conditioning of the atmosphere, temperature, and airflow, while the chamber's design averts user exposure to the high-voltage components. All the Computer-Aided Design (CAD) files and point-by-point assembly instructions, along with a list of the materials used, are provided.


Subject(s)
Nanofibers , Biocompatible Materials , Electricity , Polymers
4.
Biofabrication ; 13(3)2021 06 28.
Article in English | MEDLINE | ID: mdl-34102613

ABSTRACT

Recent advancements in the bioinks and three-dimensional (3D) bioprinting methods used to fabricate vascular constructs are summarized herein. Critical biomechanical properties required to fabricate an ideal vascular graft are highlighted, as well as various testing methods have been outlined to evaluate the bio-fabricated grafts as per the Food and Drug Administration (FDA) and International Organization for Standardization (ISO) guidelines. Occlusive artery disease and cardiovascular disease are the major causes of death globally. These diseases are caused by the blockage in the arteries, which results in a decreased blood flow to the tissues of major organs in the body, such as the heart. Bypass surgery is often performed using a vascular graft to re-route the blood flow. Autologous grafts represent a gold standard for such bypass surgeries; however, these grafts may be unavailable due to the previous harvesting or possess a poor quality. Synthetic grafts serve well for medium to large-sized vessels, but they fail when used to replace small-diameter vessels, generally smaller than 6 mm. Various tissue engineering approaches have been used to address the urgent need for vascular graft that can withstand hemodynamic blood pressure and has the ability to grow and remodel. Among these approaches, 3D bioprinting offers an attractive solution to construct patient-specific vessel grafts with layered biomimetic structures.


Subject(s)
Bioprinting , Blood Vessel Prosthesis , Humans , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...