Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Physiol ; 601(16): 3499-3532, 2023 08.
Article in English | MEDLINE | ID: mdl-37291801

ABSTRACT

In addition to its renal and cardiovascular functions, angiotensin signalling is thought to be responsible for the increases in salt and water intake caused by hypovolaemia. However, it remains unclear whether these behaviours require angiotensin production in the brain or liver. Here, we use in situ hybridization to identify tissue-specific expression of the genes required for producing angiotensin peptides, and then use conditional genetic deletion of the angiotensinogen gene (Agt) to test whether production in the brain or liver is necessary for sodium appetite and thirst. In the mouse brain, we identified expression of Agt (the precursor for all angiotensin peptides) in a large subset of astrocytes. We also identified Ren1 and Ace (encoding enzymes required to produce angiotensin II) expression in the choroid plexus, and Ren1 expression in neurons within the nucleus ambiguus compact formation. In the liver, we confirmed that Agt is widely expressed in hepatocytes. We next tested whether thirst and sodium appetite require angiotensinogen production in astrocytes or hepatocytes. Despite virtually eliminating expression in the brain, deleting astrocytic Agt did not reduce thirst or sodium appetite. Despite markedly reducing angiotensinogen in the blood, eliminating Agt from hepatocytes did not reduce thirst or sodium appetite, and in fact, these mice consumed the largest amounts of salt and water after sodium deprivation. Deleting Agt from both astrocytes and hepatocytes also did not prevent thirst or sodium appetite. Our findings suggest that angiotensin signalling is not required for sodium appetite or thirst and highlight the need to identify alternative signalling mechanisms. KEY POINTS: Angiotensin signalling is thought to be responsible for the increased thirst and sodium appetite caused by hypovolaemia, producing elevated water and sodium intake. Specific cells in separate brain regions express the three genes needed to produce angiotensin peptides, but brain-specific deletion of the angiotensinogen gene (Agt), which encodes the lone precursor for all angiotensin peptides, did not reduce thirst or sodium appetite. Double-deletion of Agt from brain and liver also did not reduce thirst or sodium appetite. Liver-specific deletion of Agt reduced circulating angiotensinogen levels without reducing thirst or sodium appetite. Instead, these angiotensin-deficient mice exhibited an enhanced sodium appetite. Because the physiological mechanisms controlling thirst and sodium appetite continued functioning without angiotensin production in the brain and liver, understanding these mechanisms requires a renewed search for the hypovolaemic signals necessary for activating each behaviour.


Subject(s)
Angiotensinogen , Sodium , Mice , Animals , Angiotensinogen/genetics , Angiotensinogen/metabolism , Appetite/physiology , Thirst/physiology , Hypovolemia , Astrocytes/metabolism , Hepatocytes/metabolism , Angiotensin II/metabolism , Sodium Chloride , Water
2.
J Gen Physiol ; 155(4)2023 04 03.
Article in English | MEDLINE | ID: mdl-36695813

ABSTRACT

Phosphoregulation is ubiquitous in biology. Defining the functional roles of individual phosphorylation sites within a multivalent system remains particularly challenging. We have therefore applied a chemical biology approach to light-control the state of single candidate phosphoserines in the canonical anion channel CFTR while simultaneously measuring channel activity. The data show striking non-equivalency among protein kinase A consensus sites, which vary from <10% to >1,000% changes in channel activity upon phosphorylation. Of note, slow phosphorylation of S813 suggests that this site is rate-limiting to the full activation of CFTR. Further, this approach reveals an unexpected coupling between the phosphorylation of S813 and a nearby site, S795. Overall, these data establish an experimental route to understanding roles of specific phosphoserines within complex phosphoregulatory domains. This strategy may be employed in the study of phosphoregulation of other eukaryotic proteins.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Phosphorylation , Anions/metabolism
3.
Physiol Rep ; 9(2): e14714, 2021 01.
Article in English | MEDLINE | ID: mdl-33463885

ABSTRACT

Restricting dietary sodium promotes sodium appetite in rats. Prolonged sodium restriction increases plasma potassium (pK), and elevated pK is largely responsible for a concurrent increase in aldosterone, which helps promote sodium appetite. In addition to increasing aldosterone, we hypothesized that elevated potassium directly influences the brain to promote sodium appetite. To test this, we restricted dietary potassium in sodium-deprived rats. Potassium restriction reduced pK and blunted the increase in aldosterone caused by sodium deprivation, but did not prevent sodium appetite or the activation of aldosterone-sensitive HSD2 neurons. Conversely, supplementing potassium in sodium-deprived rats increased pK and aldosterone, but did not increase sodium appetite or the activation of HSD2 neurons relative to potassium restriction. Supplementing potassium without sodium deprivation did not significantly increase aldosterone and HSD2 neuronal activation and only modestly increased saline intake. Overall, restricting dietary sodium activated the HSD2 neurons and promoted sodium appetite across a wide range of pK and aldosterone, and saline consumption inactivated the HSD2 neurons despite persistent hyperaldosteronism. In conclusion, elevated potassium is important for increasing aldosterone, but it is neither necessary nor sufficient for activating HSD2 neurons and increasing sodium appetite.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 2/metabolism , Aldosterone/metabolism , Appetite/physiology , Diet, Sodium-Restricted/methods , Neural Pathways/physiology , Neurons/physiology , Potassium/metabolism , Animals , Male , Rats , Rats, Sprague-Dawley , Sodium/deficiency , Sodium/metabolism
4.
Front Syst Neurosci ; 13: 62, 2019.
Article in English | MEDLINE | ID: mdl-31736720

ABSTRACT

The literature is extensive on how hypertension affects the morphology and function of the central nervous system (CNS) and is being focused on multiple organ damage involving the kidneys, heart, endothelium and retina. Hypertension damage to the peripheral nervous system is less explored in the literature. We have previously shown morphometric alterations in large and small caliber myelinated fibers of nerves in the adult spontaneously hypertensive rat (SHR). However, the functional correlation of these findings has not been explored. We performed an electrophysiological investigation of hind limb nerves in SHR of both genders in different ages. Normotensive Wistar-Kyoto (WKY) rats were used as controls. Electrophysiological recordings and determination of motor (MCV) and sensory (SCV) nerve conduction velocity were performed in the same animals at four different ages: 5, 8, 20 and 40 weeks after birth. Comparisons were made between ages, genders and animal strain. We showed a continuous body weight increase in adult life in all animals studied. MCV got stable at 20-week old hypertensive animals and continued to increase in normotensive ones. The SCV was constant between the ages of 20 and 40 weeks old in female SHR and decreased in male SHR while it continued to increase in WKY animals. The electrophysiological investigation of the nerves in WKY and SHR from both genders and different ages, associated with morphological and morphometric data from the literature suggest that hypertension affects the nerve function and might corroborate the development of a peripheral neuropathy.

SELECTION OF CITATIONS
SEARCH DETAIL
...