Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Thromb Haemost ; 14(12): 2458-2470, 2016 12.
Article in English | MEDLINE | ID: mdl-27614059

ABSTRACT

Essentials Factor VIIa is cleared principally as a complex with antithrombin. Enzyme/serpin complexes are preferred ligands for the scavenger-receptor LRP1. Factor VIIa/antithrombin but not factor VIIa alone is a ligand for LRP1. Macrophage-expressed LRP1 contributes to the clearance of factor VIIa/antithrombin. SUMMARY: Background Recent findings point to activated factor VII (FVIIa) being cleared predominantly (± 65% of the injected protein) as part of a complex with the serpin antithrombin. FVIIa-antithrombin complexes are targeted to hepatocytes and liver macrophages. Both cells lines abundantly express LDL receptor-related protein 1 (LRP1), a scavenger receptor mediating the clearance of protease-serpin complexes. Objectives To investigate whether FVIIa-antithrombin is a ligand for LRP1. Methods Binding of FVIIa and pre-formed FVIIa-antithrombin to purified LRP1 Fc-tagged cluster IV (rLRP1-cIV/Fc) and to human and murine macrophages was analyzed. FVIIa clearance was determined in macrophage LRP1 (macLRP1)-deficient mice. Results Solid-phase binding assays showed that FVIIa-antithrombin bound in a specific, dose-dependent and saturable manner to rLRP1-cIV/Fc. Competition experiments with human THP1 macrophages indicated that binding of FVIIa but not of FVIIa-antithrombin was reduced in the presence of annexin-V or anti-tissue factor antibodies, whereas binding of FVIIa-antithrombin but not FVIIa was inhibited by the LRP1-antagonist GST-RAP. Additional experiments revealed binding of both FVIIa and FVIIa-antithrombin to murine control macrophages. In contrast, no binding of FVIIa-antithrombin to macrophages derived from macLRP1-deficient mice could be detected. Clearance of FVIIa-antithrombin but not of active site-blocked FVIIa was delayed 1.5-fold (mean residence time of 3.3 ± 0.1 h versus 2.4 ± 0.2 h) in macLRP1-deficient mice. The circulatory presence of FVIIa was prolonged to a similar extent in macLRP1-deficient mice and in control mice. Conclusions Our data show that FVIIa-antithrombin but not FVIIa is a ligand for LRP1, and that LRP1 contributes to the clearance of FVIIa-antithrombin in vivo.


Subject(s)
Antithrombins/metabolism , Factor VIIa/metabolism , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Receptors, LDL/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Carrier Proteins/metabolism , Catalytic Domain , Cell Line , Humans , Ligands , Macrophages/metabolism , Mice , Protein Binding , Recombinant Proteins/metabolism , Serpins/metabolism , Thromboplastin/metabolism , Time Factors
2.
J Thromb Haemost ; 11(6): 1128-36, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23581397

ABSTRACT

BACKGROUND: Heparin and its analogs, mediating their anticoagulant activity through antithrombin (AT) activation, remain largely used for the preventive and curative treatment of thrombosis. The major adverse reaction of these drugs is the bleeding risk associated with overdose. Unfractionnated heparin (UFH) can be efficiently and rapidly neutralized by protamine sulfate, but this reversal partially neutralizes low-molecular-weight heparin (LMWH) and is inefficient in reversing fondaparinux. To secure administration of AT-mediated anticoagulants and counteract bleeding disorders, we previously designed a recombinant inactive AT as an antidote to heparin derivatives. OBJECTIVES: To get around the limited production level of recombinant AT, we propose in this study an alternative strategy to produce a chemically modified inactive AT, exhibiting increased heparin affinity, as an antagonist of heparin analogs. METHODS: Plasma-derived AT was chemically modified with 2,3 butanedione, a diketone known to specifically react with the arginine side chain. The chemical reaction was conducted in the presence of heparin to preserve basic residues within the heparin binding site from modifications. RESULTS: AT treated by butanedione and selected for its high heparin affinity (AT-BD) was indeed modified on reactive Arg393 and thus exhibited decreased anticoagulant activity and increased heparin affinity. AT-BD was able to neutralize anticoagulant activity of heparin derivatives in vitro and in vivo and was devoid of intrinsic anticoagulant activity, as assessed by activated partial thromboplastin time assay. CONCLUSIONS: AT-BD appears to be as efficient as protamine to neutralize UFH in vivo but could be more largely used because it also reverses fondaparinux and LMWH.


Subject(s)
Anticoagulants/chemistry , Antithrombins/therapeutic use , Heparin Antagonists/chemistry , Polysaccharides/antagonists & inhibitors , Animals , Antithrombins/chemistry , Arginine/chemistry , Diacetyl/chemistry , Drug Design , Female , Fondaparinux , Hemorrhage , Heparin/chemistry , Humans , Mass Spectrometry , Mice , Partial Thromboplastin Time , Polysaccharides/chemistry , Recombinant Proteins/chemistry , Risk
SELECTION OF CITATIONS
SEARCH DETAIL
...