Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Photochem Photobiol ; 100(1): 233-243, 2024.
Article in English | MEDLINE | ID: mdl-37332186

ABSTRACT

Photobiomodulation therapy (PBMT) is converted to the most common analgesic treatment before the whole mechanism is yet to be discovered. This study for the first time was designed to investigate alternations of epigenetic factors after pain and PBMT. The CCI model was chosen to induce pain. Pain evaluation tests including plantar, acetone, von Frey, and pinch were done weekly. Then spinal cord tissue was isolated for evaluating mRNA expression of DNMT3a, HDAC1, and NRSF using RT-qPCR method, and protein expression factors of HDAC2 and DNMT3a using western blotting. GAD65 and TGF-ß proteins were assessed by the IHC method. PBMT increased the pain threshold up to the point where it roughly met the pain threshold of the control group. After three weeks of treatment, both PBMT protocols demonstrated a reduction in allodynia and hyperalgesia. While some molecules, such as TGF-ß and Gad65, increased following PBMT, we observed no inhibition of NRSF, HDAC1, and DNMT3a expression despite implementing two different protocols.


Subject(s)
Low-Level Light Therapy , Neuralgia , Humans , Neuralgia/metabolism , Pain Threshold/physiology , Hyperalgesia , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Epigenesis, Genetic
2.
Photochem Photobiol Sci ; 22(11): 2527-2540, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37787959

ABSTRACT

BACKGROUND: Photobiomodulation therapy (PBMT), due to its anti-inflammatory, analgesic effects, and most importantly as a non-invasive procedure, has currently gained a special setting in pain relief and the treatment of Spinal cord injuries (SCI). However, the mechanism of action of the PBM is not yet completely understood. METHODS: In this study, SCI is induced by an aneurysm clip, and PBM therapy was applied by a continuous-wave (CW) laser with a wavelength of 660 nm. Adult male rats were divided into four groups: Control, SCI, SCI + PBMT 90s, and SCI + PBMT 117s. After 7 weeks, hyperalgesia, allodynia, and functional recovery were assessed. Fibroblasts infiltrating the spinal cord were counted after H&E staining. The expression of epigenetic factors (HDAC2, DNMT3a), protein relevant for pain (GAD65), and astrocytes marker (GFAP) after 4 weeks of daily PBMT (90 and 117s) was probed by western blotting. RESULTS: Both PBMTs (90 and 117s) significantly improved the pain and ability to move and fibroblast invasion was reduced. SCI + PBMT 90s, increased GAD65, HDAC2, and DNMT3a expression. However, PBMT 117s decreased GFAP, HDAC2, and DNMT3a. CONCLUSION: PBMT 90 and 117s improved the pain, and functional recovery equally. The regulation of epigenetic mechanisms appears to be a significant effect of PBMT117s, which emphasizes on impact of radiation duration and accumulative energy.


Subject(s)
Low-Level Light Therapy , Neuralgia , Spinal Cord Injuries , Rats , Male , Animals , Low-Level Light Therapy/methods , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/metabolism , Hyperalgesia , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Epigenesis, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...