Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 13(14): 9715-9719, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36968063

ABSTRACT

A novel strategy of improving cytotoxicity against metastatic melanoma cells using an oxindolimine copper(ii) complex immobilized and dimerized on a modified Polyhedral Oligomeric Silsesquioxane (POSS) matrix was developed, as revealed by electron paramagnetic resonance (EPR) spectroscopy. An assured correlation between continuous-wave (CW) and pulsed EPR spectroscopies provided a complete characterization of the actual active species, its coordination environment, as well as the efficiency/selectivity of the bioconjugate materials.

2.
Free Radic Biol Med ; 168: 110-116, 2021 05 20.
Article in English | MEDLINE | ID: mdl-33798616

ABSTRACT

Nitrones derived from natural antioxidants are emerging as highly specific therapeutics against various human diseases, including stroke, neurodegenerative pathologies, and cancer. However, the development of useful pseudo-natural nitrones requires the judicious choice of a secondary metabolite as the precursor. Betalains are nitrogen-containing natural pigments that exhibit marked antioxidant capacity and pharmacological properties and, hence, are ideal candidates for designing multifunctional nitrones. In this work, we describe the semisynthesis and properties of a biocompatible and antioxidant betalain-nitrone called OxiBeet. This bio-based compound is a better radical scavenger than ascorbic acid, gallic acid, and most non-phenolic antioxidants and undergoes concerted proton-coupled electron transfer. The autoxidation of OxiBeet produces a persistent nitroxide radical, which, herein, is studied via electron paramagnetic resonance spectroscopy. In addition, femtosecond transient absorption spectroscopy reveals that excited state formation is not required for the oxidation of OxiBeet. The results are compared with those obtained using betanin, a natural betalain, and pBeet, the imine analog of OxiBeet. The findings of this study will enable the development of antioxidant and spin-trap nitrones based on the novel N-oxide 1,7-diazaheptamethinium scaffold and betalain dyes with enhanced hydrolytic stability in aqueous alkaline media.


Subject(s)
Antioxidants , Nitrogen Oxides , Electron Spin Resonance Spectroscopy , Humans
3.
Chem Biol Interact ; 311: 108789, 2019 Sep 25.
Article in English | MEDLINE | ID: mdl-31401089

ABSTRACT

The cytotoxicity of a dinuclear imine-copper (II) complex 2, and its analogous mononuclear complex 1, toward different melanoma cells, particularly human SKMEL-05 and SKMEL-147, was investigated. Complex 2, a tyrosinase mimic, showed much higher activity in comparison to complex 1, and its reactivity was verified to be remarkably activated by UVB-light, while the mononuclear compound showed a small or negligible effect. Further, a significant dependence on the melanin content in the tumor cells, both from intrinsic pigmentation or stimulated by irradiation, was observed in the case of complex 2. Similar tests with keratinocytes and melanocytes indicated a much lower sensitivity to both copper (II) complexes, even after exposition to UV light. Clonogenic assays attested that the fractions of melanoma cells survival were much lower under treatment with complex 2 compared to complex 1, both with or without previous irradiation of the cells. The process also involves generation of reactive oxygen species (ROS), as verified by EPR spectroscopy, and by using fluorescence indicators. Autophagic assays indicated a remarkable formation of cytoplasmic vacuoles in melanomas treated with complex 2, while this effect was not observed in similar treatment with complex 1. Monitoring of specific protein LC3 corroborated the simultaneous occurrence of autophagy. A balance interplay between different modes of cell death, apoptosis and autophagy, occurs when melanomas were treated with the dinuclear complex 2, in contrast to the mononuclear complex 1. These results pointed out to different mechanisms of action of such complexes, depending on its nuclearity.


Subject(s)
Coordination Complexes/chemistry , Copper/chemistry , Imines/chemistry , Monophenol Monooxygenase/metabolism , Animals , Autophagy/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/radiation effects , Coordination Complexes/metabolism , Coordination Complexes/pharmacology , Electron Spin Resonance Spectroscopy , G1 Phase Cell Cycle Checkpoints/drug effects , G1 Phase Cell Cycle Checkpoints/radiation effects , Humans , Melanins/metabolism , Melanoma/metabolism , Melanoma/pathology , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Tubulin/metabolism , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...