Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Radiol ; 177: 111590, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38959557

ABSTRACT

PURPOSE: To assess the perceptions and attitudes of radiologists toward the adoption of artificial intelligence (AI) in clinical practice. METHODS: A survey was conducted among members of the SIRM Lombardy. Radiologists' attitudes were assessed comprehensively, covering satisfaction with AI-based tools, propensity for innovation, and optimism for the future. The questionnaire consisted of two sections: the first gathered demographic and professional information using categorical responses, while the second evaluated radiologists' attitudes toward AI through Likert-type responses ranging from 1 to 5 (with 1 representing extremely negative attitudes, 3 indicating a neutral stance, and 5 reflecting extremely positive attitudes). Questionnaire refinement involved an iterative process with expert panels and a pilot phase to enhance consistency and eliminate redundancy. Exploratory data analysis employed descriptive statistics and visual assessment of Likert plots, supported by non-parametric tests for subgroup comparisons for a thorough analysis of specific emerging patterns. RESULTS: The survey yielded 232 valid responses. The findings reveal a generally optimistic outlook on AI adoption, especially among young radiologist (<30) and seasoned professionals (>60, p<0.01). However, while 36.2 % (84 out 232) of subjects reported daily use of AI-based tools, only a third considered their contribution decisive (30 %, 25 out of 84). AI literacy varied, with a notable proportion feeling inadequately informed (36 %, 84 out of 232), particularly among younger radiologists (46 %, p < 0.01). Positive attitudes towards the potential of AI to improve detection, characterization of anomalies and reduce workload (positive answers > 80 %) and were consistent across subgroups. Radiologists' opinions were more skeptical about the role of AI in enhancing decision-making processes, including the choice of further investigation, and in personalized medicine in general. Overall, respondents recognized AI's significant impact on the radiology profession, viewing it as an opportunity (61 %, 141 out of 232) rather than a threat (18 %, 42 out of 232), with a majority expressing belief in AI's relevance to future radiologists' career choices (60 %, 139 out of 232). However, there were some concerns, particularly among breast radiologists (20 of 232 responders), regarding the potential impact of AI on the profession. Eighty-four percent of the respondents consider the final assessment by the radiologist still to be essential. CONCLUSION: Our results indicate an overall positive attitude towards the adoption of AI in radiology, though this is moderated by concerns regarding training and practical efficacy. Addressing AI literacy gaps, especially among younger radiologists, is essential. Furthermore, proactively adapting to technological advancements is crucial to fully leverage AI's potential benefits. Despite the generally positive outlook among radiologists, there remains significant work to be done to enhance the integration and widespread use of AI tools in clinical practice.

2.
Crit Rev Oncog ; 29(2): 29-35, 2024.
Article in English | MEDLINE | ID: mdl-38505879

ABSTRACT

Artificial Intelligence (AI) algorithms have shown great promise in oncological imaging, outperforming or matching radiologists in retrospective studies, signifying their potential for advanced screening capabilities. These AI tools offer valuable support to radiologists, assisting them in critical tasks such as prioritizing reporting, early cancer detection, and precise measurements, thereby bolstering clinical decision-making. With the healthcare landscape witnessing a surge in imaging requests and a decline in available radiologists, the integration of AI has become increasingly appealing. By streamlining workflow efficiency and enhancing patient care, AI presents a transformative solution to the challenges faced by oncological imaging practices. Nevertheless, successful AI integration necessitates navigating various ethical, regulatory, and medical-legal challenges. This review endeavors to provide a comprehensive overview of these obstacles, aiming to foster a responsible and effective implementation of AI in oncological imaging.


Subject(s)
Artificial Intelligence , Early Detection of Cancer , Humans , Retrospective Studies , Medical Oncology
3.
Radiol Artif Intell ; 4(2): e210199, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35391766

ABSTRACT

Mammographic breast density (BD) is commonly visually assessed using the Breast Imaging Reporting and Data System (BI-RADS) four-category scale. To overcome inter- and intraobserver variability of visual assessment, the authors retrospectively developed and externally validated a software for BD classification based on convolutional neural networks from mammograms obtained between 2017 and 2020. The tool was trained using the majority BD category determined by seven board-certified radiologists who independently visually assessed 760 mediolateral oblique (MLO) images in 380 women (mean age, 57 years ± 6 [SD]) from center 1; this process mimicked training from a consensus of several human readers. External validation of the model was performed by the three radiologists whose BD assessment was closest to the majority (consensus) of the initial seven on a dataset of 384 MLO images in 197 women (mean age, 56 years ± 13) obtained from center 2. The model achieved an accuracy of 89.3% in distinguishing BI-RADS a or b (nondense breasts) versus c or d (dense breasts) categories, with an agreement of 90.4% (178 of 197 mammograms) and a reliability of 0.807 (Cohen κ) compared with the mode of the three readers. This study demonstrates accuracy and reliability of a fully automated software for BD classification. Keywords: Mammography, Breast, Convolutional Neural Network (CNN), Deep Learning Algorithms, Machine Learning Algorithms Supplemental material is available for this article. © RSNA, 2022.

4.
Explor Target Antitumor Ther ; 3(6): 795-816, 2022.
Article in English | MEDLINE | ID: mdl-36654817

ABSTRACT

The advent of artificial intelligence (AI) represents a real game changer in today's landscape of breast cancer imaging. Several innovative AI-based tools have been developed and validated in recent years that promise to accelerate the goal of real patient-tailored management. Numerous studies confirm that proper integration of AI into existing clinical workflows could bring significant benefits to women, radiologists, and healthcare systems. The AI-based approach has proved particularly useful for developing new risk prediction models that integrate multi-data streams for planning individualized screening protocols. Furthermore, AI models could help radiologists in the pre-screening and lesion detection phase, increasing diagnostic accuracy, while reducing workload and complications related to overdiagnosis. Radiomics and radiogenomics approaches could extrapolate the so-called imaging signature of the tumor to plan a targeted treatment. The main challenges to the development of AI tools are the huge amounts of high-quality data required to train and validate these models and the need for a multidisciplinary team with solid machine-learning skills. The purpose of this article is to present a summary of the most important AI applications in breast cancer imaging, analyzing possible challenges and new perspectives related to the widespread adoption of these new tools.

5.
Med Image Anal ; 74: 102216, 2021 12.
Article in English | MEDLINE | ID: mdl-34492574

ABSTRACT

Recent epidemiological data report that worldwide more than 53 million people have been infected by SARS-CoV-2, resulting in 1.3 million deaths. The disease has been spreading very rapidly and few months after the identification of the first infected, shortage of hospital resources quickly became a problem. In this work we investigate whether artificial intelligence working with chest X-ray (CXR) scans and clinical data can be used as a possible tool for the early identification of patients at risk of severe outcome, like intensive care or death. Indeed, further to induce lower radiation dose than computed tomography (CT), CXR is a simpler and faster radiological technique, being also more widespread. In this respect, we present three approaches that use features extracted from CXR images, either handcrafted or automatically learnt by convolutional neuronal networks, which are then integrated with the clinical data. As a further contribution, this work introduces a repository that collects data from 820 patients enrolled in six Italian hospitals in spring 2020 during the first COVID-19 emergency. The dataset includes CXR images, several clinical attributes and clinical outcomes. Exhaustive evaluation shows promising performance both in 10-fold and leave-one-centre-out cross-validation, suggesting that clinical data and images have the potential to provide useful information for the management of patients and hospital resources.


Subject(s)
COVID-19 , Artificial Intelligence , Humans , Italy , SARS-CoV-2 , X-Rays
6.
Eur Radiol Exp ; 4(1): 5, 2020 01 28.
Article in English | MEDLINE | ID: mdl-31993839

ABSTRACT

BACKGROUND: Differentiate malignant from benign enhancing foci on breast magnetic resonance imaging (MRI) through radiomic signature. METHODS: Forty-five enhancing foci in 45 patients were included in this retrospective study, with needle biopsy or imaging follow-up serving as a reference standard. There were 12 malignant and 33 benign lesions. Eight benign lesions confirmed by over 5-year negative follow-up and 15 malignant histopathologically confirmed lesions were added to the dataset to provide reference cases to the machine learning analysis. All MRI examinations were performed with a 1.5-T scanner. One three-dimensional T1-weighted unenhanced sequence was acquired, followed by four dynamic sequences after intravenous injection of 0.1 mmol/kg of gadobenate dimeglumine. Enhancing foci were segmented by an expert breast radiologist, over 200 radiomic features were extracted, and an evolutionary machine learning method ("training with input selection and testing") was applied. For each classifier, sensitivity, specificity and accuracy were calculated as point estimates and 95% confidence intervals (CIs). RESULTS: A k-nearest neighbour classifier based on 35 selected features was identified as the best performing machine learning approach. Considering both the 45 enhancing foci and the 23 additional cases, this classifier showed a sensitivity of 27/27 (100%, 95% CI 87-100%), a specificity of 37/41 (90%, 95% CI 77-97%), and an accuracy of 64/68 (94%, 95% CI 86-98%). CONCLUSION: This preliminary study showed the feasibility of a radiomic approach for the characterisation of enhancing foci on breast MRI.


Subject(s)
Breast Neoplasms/pathology , Image Interpretation, Computer-Assisted/methods , Machine Learning , Magnetic Resonance Imaging/methods , Adult , Contrast Media , Diagnosis, Differential , Feasibility Studies , Female , Humans , Meglumine/analogs & derivatives , Middle Aged , Organometallic Compounds , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...