Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Biol Sci ; 287(1928): 20200254, 2020 06 10.
Article in English | MEDLINE | ID: mdl-32517625

ABSTRACT

A current evolutionary hypothesis predicts that the most extreme forms of animal weaponry arise in systems where combatants fight each other one-to-one, in duels. It has also been suggested that arms races in human interstate conflicts are more likely to escalate in cases where there are only two opponents. However, directly testing whether duels matter for weapon investment is difficult in animals and impossible in interstate conflicts. Here, we test whether superior combatants experience a disproportionate advantage in duels, as compared with multi-combatant skirmishes, in a system analogous to both animal and military contests: the battles fought by artificial intelligence agents in a computer war game. We found that combatants with experimentally improved fighting power had a large advantage in duels, but that this advantage deteriorated as the complexity of the battlefield was increased by the addition of further combatants. This pattern remained under the two different forms of the advantage granted to our focal artificial intelligence (AI) combatants, and became reversed when we switched the roles to feature a weak focal AI among strong opponents. Our results suggest that one-on-one combat may trigger arms races in diverse systems. These results corroborate the outcomes of studies of both animal and interstate contests, and suggest that elements of animal contest theory may be widely applicable to arms races generally.


Subject(s)
Aggression , Behavior, Animal , Competitive Behavior , Animals , Artificial Intelligence , Biological Evolution , Cybernetics , Weapons
2.
Biol Lett ; 9(6): 20130746, 2013.
Article in English | MEDLINE | ID: mdl-24284560

ABSTRACT

Overlap in the form of sexual signals such as pheromones raises the possibility of reproductive interference by invasive species on similar, yet naive native species. Here, we test the potential for reproductive interference through heterospecific mate attraction and subsequent predation of males by females of a sexually cannibalistic invasive praying mantis. Miomantis caffra is invasive in New Zealand, where it is widely considered to be displacing the only native mantis species, Orthodera novaezealandiae, and yet mechanisms behind this displacement are unknown. We demonstrate that native males are more attracted to the chemical cues of introduced females than those of conspecific females. Heterospecific pairings also resulted in a high degree of mortality for native males. This provides evidence for a mechanism behind displacement that has until now been undetected and highlights the potential for reproductive interference to greatly influence the impact of an invasive species.


Subject(s)
Behavior, Animal , Mantodea/physiology , Predatory Behavior , Sexual Behavior, Animal , Animals , Cannibalism , Competitive Behavior , Female , Introduced Species , Male , Mating Preference, Animal , New Zealand , Pheromones/physiology , Reproduction/physiology , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...