Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 332(6036): 1396-400, 2011 Jun 17.
Article in English | MEDLINE | ID: mdl-21680835

ABSTRACT

Understanding how comets work--what drives their activity--is crucial to the use of comets in studying the early solar system. EPOXI (Extrasolar Planet Observation and Deep Impact Extended Investigation) flew past comet 103P/Hartley 2, one with an unusually small but very active nucleus, taking both images and spectra. Unlike large, relatively inactive nuclei, this nucleus is outgassing primarily because of CO(2), which drags chunks of ice out of the nucleus. It also shows substantial differences in the relative abundance of volatiles from various parts of the nucleus.

2.
Science ; 326(5952): 565-8, 2009 Oct 23.
Article in English | MEDLINE | ID: mdl-19779149

ABSTRACT

The Moon is generally anhydrous, yet the Deep Impact spacecraft found the entire surface to be hydrated during some portions of the day. Hydroxyl (OH) and water (H2O) absorptions in the near infrared were strongest near the North Pole and are consistent with <0.5 weight percent H2O. Hydration varied with temperature, rather than cumulative solar radiation, but no inherent absorptivity differences with composition were observed. However, comparisons between data collected 1 week (a quarter lunar day) apart show a dynamic process with diurnal changes in hydration that were greater for mare basalts (approximately 70%) than for highlands (approximately 50%). This hydration loss and return to a steady state occurred entirely between local morning and evening, requiring a ready daytime source of water-group ions, which is consistent with a solar wind origin.


Subject(s)
Hydroxyl Radical , Moon , Water , Extraterrestrial Environment , Spacecraft , Spectrum Analysis , Sunlight , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...