Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Sci ; 107(9): 2411-2419, 2018 09.
Article in English | MEDLINE | ID: mdl-29802933

ABSTRACT

Administration of local anesthetics is one of the most effective pain control techniques for postoperative analgesia. However, anesthetic agents easily diffuse into the injection site, limiting the time of anesthesia. One approach to prolong analgesia is to entrap local anesthetic agents in nanostructured carriers (e.g., liposomes). Here, we report that using an ammonium sulphate gradient was the best strategy to improve the encapsulation (62.6%) of dibucaine (DBC) into liposomes. Light scattering and nanotracking analyses were used to characterize vesicle properties, such as, size, polydispersity, zeta potentials, and number. In vitro kinetic experiments revealed the sustained release of DBC (50% in 7 h) from the liposomes. In addition, in vitro (3T3 cells in culture) and in vivo (zebrafish) toxicity assays revealed that ionic-gradient liposomes were able to reduce DBC cyto/cardiotoxicity and morphological changes in zebrafish larvae. Moreover, the anesthesia time attained after infiltrative administration in mice was longer with encapsulated DBC (27 h) than that with free DBC (11 h), at 320 µM (0.012%), confirming it as a promising long-acting liposome formulation for parenteral drug administration of DBC.


Subject(s)
Anesthetics, Local/pharmacokinetics , Anesthetics, Local/toxicity , Dibucaine/pharmacokinetics , Dibucaine/toxicity , Motor Activity/drug effects , Pain Measurement/drug effects , Animals , BALB 3T3 Cells , Cell Survival/drug effects , Cell Survival/physiology , Drug Liberation , Liposomes , Male , Mice , Motor Activity/physiology , Pain Measurement/methods , Phosphatidylcholines/pharmacokinetics , Phosphatidylcholines/toxicity , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...