Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Sci ; 137(1)2024 01 01.
Article in English | MEDLINE | ID: mdl-38063216

ABSTRACT

In Chlamydomonas, the channel polycystin 2 (PKD2) is primarily present in the distal region of cilia, where it is attached to the axoneme and mastigonemes, extracellular polymers of MST1. In a smaller proximal ciliary region that lacks mastigonemes, PKD2 is more mobile. We show that the PKD2 regions are established early during ciliogenesis and increase proportionally in length as cilia elongate. In chimeric zygotes, tagged PKD2 rapidly entered the proximal region of PKD2-deficient cilia, whereas the assembly of the distal region was hindered, suggesting that axonemal binding of PKD2 requires de novo assembly of cilia. We identified the protein Small Interactor of PKD2 (SIP), a PKD2-related, single-pass transmembrane protein, as part of the PKD2-mastigoneme complex. In sip mutants, stability and proteolytic processing of PKD2 in the cell body were reduced and PKD2-mastigoneme complexes were absent from the cilia. Like the pkd2 and mst1 mutants, sip mutant cells swam with reduced velocity. Cilia of the pkd2 mutant beat with an increased frequency but were less efficient in moving the cells, suggesting a structural role for the PKD2-SIP-mastigoneme complex in increasing the effective surface of Chlamydomonas cilia.


Subject(s)
Chlamydomonas , Cilia , Cilia/metabolism , Chlamydomonas/genetics , Chlamydomonas/metabolism , Proteins/metabolism , Axoneme/metabolism
2.
bioRxiv ; 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37398320

ABSTRACT

In Chlamydomonas cilia, the ciliopathy-relevant TRP channel PKD2 is spatially compartmentalized into a distal region, in which PKD2 binds the axoneme and extracellular mastigonemes, and a smaller proximal region, in which PKD2 is more mobile and lacks mastigonemes. Here, we show that the two PKD2 regions are established early during cilia regeneration and increase in length as cilia elongate. In abnormally long cilia, only the distal region elongated whereas both regions adjusted in length during cilia shortening. In dikaryon rescue experiments, tagged PKD2 rapidly entered the proximal region of PKD2-deficient cilia whereas assembly of the distal region was hindered, suggesting that axonemal docking of PKD2 requires de novo ciliary assembly. We identified Small Interactor of PKD2 (SIP), a small PKD2-related protein, as a novel component of the PKD2-mastigoneme complex. In sip mutants, stability and proteolytic processing of PKD2 in the cell body were reduced and PKD2-mastigoneme complexes were absent from mutant cilia. Like the pkd2 and mst1 mutants, sip swims with reduced velocity. Cilia of the pkd2 mutant beat with normal frequency and bending pattern but were less efficient in moving cells supporting a passive role of the PKD2-SIP-mastigoneme complexes in increasing the effective surface of Chlamydomonas cilia.

SELECTION OF CITATIONS
SEARCH DETAIL
...