Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 14(6): e11603, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38932954

ABSTRACT

There is an increasing number of libraries devoted to parsing, manipulating and visualising phylogenetic trees in JavaScript. Many of these libraries bundle tree manipulation with visualisation, but have limited ability to manipulate trees and lack detailed documentation. As the number of web-based phylogenetic tools and the size of phylogenetics datasets increases, there is a need for a library that parses, writes and manipulates phylogenetic trees that is interoperable with other phylogenetic and data visualisation libraries. Here we introduce PhyloJS, a light zero-dependency TypeScript and JavaScript library for reading, writing and manipulating phylogenetic trees. PhyloJS allows for modification of and data-extraction from trees to integrate with other phylogenetics and data visualisation libraries. It can swiftly handle large trees, up to at least 10 6 tips in size, making it ideal for developing the next generation of more complex web-based phylogenetics applications handling ever larger datasets. The PhyloJS source code is available on GitHub (https://github.com/clockor2/phylojs) and can be installed via npm with the command npm install phylojs. Extensive documentation is available at https://clockor2.github.io/phylojs/.

2.
Syst Biol ; 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38366939

ABSTRACT

Molecular sequence data from rapidly evolving organisms are often sampled at different points in time. Sampling times can then be used for molecular clock calibration. The root-to-tip (RTT) regression is an essential tool to assess the degree to which the data behave in a clock-like fashion. Here, we introduce Clockor2, a client-side web application for conducting RTT regression. Clockor2 allows users to quickly fit local and global molecular clocks, thus handling the increasing complexity of genomic datasets that sample beyond the assumption of homogeneous host populations. Clockor2 is efficient, handling trees of up to the order of 104 tips, with significant speed increases compared to other RTT regression applications. Although clockor2 is written as a web application, all data processing happens on the client-side, meaning that data never leaves the user's computer. Clockor2 is freely available at https : //clockor2.github.io/.

3.
Mol Genet Genomics ; 299(1): 11, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38381254

ABSTRACT

Sequence capture is a genomic technique that selectively enriches target sequences before high throughput next-generation sequencing, to generate specific sequences of interest. Off-target or 'bycatch' data are often discarded from capture experiments, but can be leveraged to address evolutionary questions under some circumstances. Here, we investigated the effects of missing data on a variety of evolutionary analyses using bycatch from an exon capture experiment on the global pest moth, Helicoverpa armigera. We added > 200 new samples from across Australia in the form of mitogenomes obtained as bycatch from targeted sequence capture, and combined these into an additional larger dataset to total > 1000 mitochondrial cytochrome c oxidase subunit I (COI) sequences across the species' global distribution. Using discriminant analysis of principal components and Bayesian coalescent analyses, we showed that mitogenomes assembled from bycatch with up to 75% missing data were able to return evolutionary inferences consistent with higher coverage datasets and the broader literature surrounding H. armigera. For example, low-coverage sequences broadly supported the delineation of two H. armigera subspecies and also provided new insights into the potential for geographic turnover among these subspecies. However, we also identified key effects of dataset coverage and composition on our results. Thus, low-coverage bycatch data can offer valuable information for population genetic and phylodynamic analyses, but caution is required to ensure the reduced information does not introduce confounding factors, such as sampling biases, that drive inference. We encourage more researchers to consider maximizing the potential of the targeted sequence approach by examining evolutionary questions with their off-target bycatch where possible-especially in cases where no previous mitochondrial data exists-but recommend stratifying data at different genome coverage thresholds to separate sampling effects from genuine genomic signals, and to understand their implications for evolutionary research.


Subject(s)
Agriculture , Biological Evolution , Bayes Theorem , Australia , Exons
4.
Mol Biol Evol ; 40(6)2023 06 01.
Article in English | MEDLINE | ID: mdl-37264694

ABSTRACT

Despite its increasing role in the understanding of infectious disease transmission at the applied and theoretical levels, phylodynamics lacks a well-defined notion of ideal data and optimal sampling. We introduce a method to visualize and quantify the relative impact of pathogen genome sequence and sampling times-two fundamental sources of data for phylodynamics under birth-death-sampling models-to understand how each drives phylodynamic inference. Applying our method to simulated data and real-world SARS-CoV-2 and H1N1 Influenza data, we use this insight to elucidate fundamental trade-offs and guidelines for phylodynamic analyses to draw the most from sequence data. Phylodynamics promises to be a staple of future responses to infectious disease threats globally. Continuing research into the inherent requirements and trade-offs of phylodynamic data and inference will help ensure phylodynamic tools are wielded in ever more targeted and efficient ways.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Phylogeny , SARS-CoV-2/genetics
5.
Virus Evol ; 8(1): veac045, 2022.
Article in English | MEDLINE | ID: mdl-35775026

ABSTRACT

Phylodynamics requires an interdisciplinary understanding of phylogenetics, epidemiology, and statistical inference. It has also experienced more intense application than ever before amid the SARS-CoV-2 pandemic. In light of this, we present a review of phylodynamic models beginning with foundational models and assumptions. Our target audience is public health researchers, epidemiologists, and biologists seeking a working knowledge of the links between epidemiology, evolutionary models, and resulting epidemiological inference. We discuss the assumptions linking evolutionary models of pathogen population size to epidemiological models of the infected population size. We then describe statistical inference for phylodynamic models and list how output parameters can be rearranged for epidemiological interpretation. We go on to cover more sophisticated models and finish by highlighting future directions.

SELECTION OF CITATIONS
SEARCH DETAIL
...