Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124258, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38599025

ABSTRACT

This research transformed MTX into smart nanoparticles that respond to the acidic conditions present in inflammation. These nanoparticles were then incorporated into a patch that dissolves over time, aiding their penetration. A method using UV-Vis spectrophotometry was validated to support the development of this new delivery system. This method was used to measure the quantity of MTX in the prepared patches in various scenarios: in laboratory solutions with pH 7.4 and pH 5.0, in skin tissue, and plasma. This validation was conducted in laboratory studies, tissue samples, and live subjects, adhering to established guidelines. The resulting calibration curve displayed a linear relationship (correlation coefficient 0.999) across these scenarios. The lowest quantity of MTX that could be accurately detected was 0.6 µg/mL in pH 7.4 solutions, 1.46 µg/mL in pH 5.0 solutions, 1.11 µg/mL in skin tissue, and 1.48 µg/mL in plasma. This validated method exhibited precision and accuracy and was not influenced by dilution effects. The method was effectively used to measure MTX levels in the developed patch in controlled lab settings and biological systems (in vitro, ex vivo, and in vivo). This showed consistent drug content in the patches, controlled release patterns over 24 h, and pharmacokinetic profiles spanning 48 h. However, additional analytical approaches were necessary for quantifying MTX in studies focused on the drug's effects on the body's functions.


Subject(s)
Colorimetry , Methotrexate , Nanoparticles , Skin , Spectrophotometry, Ultraviolet , Animals , Methotrexate/blood , Methotrexate/pharmacokinetics , Methotrexate/administration & dosage , Methotrexate/chemistry , Methotrexate/analysis , Hydrogen-Ion Concentration , Nanoparticles/chemistry , Skin/metabolism , Skin/chemistry , Colorimetry/methods , Rats , Drug Liberation , Male , Humans , Reproducibility of Results , Transdermal Patch , Rats, Wistar
2.
AAPS PharmSciTech ; 25(4): 70, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38538953

ABSTRACT

PURPOSE: Rheumatoid arthritis (RA) is a systemic autoimmune disease that attacks human joints. Methotrexate (MTX), as one the most effective medications to treat RA, has limitations when administered either orally or by injection. To overcome this limitation, we formulated MTX through a smart nanoparticle (SNP) combined with dissolving microarray patch (DMAP) to achieve selective-targeted delivery of RA. METHODS: SNP was made using the combination of polyethylene glycol (PEG) and polycaprolactone (PCL) polymers, while DMAP was made using the combination of hyaluronic acid and polyvinylpyrrolidone K-30. SNP-DMAP was then evaluated for its mechanical and chemical characteristics, ex vivo permeation test, in vivo pharmacokinetic study, hemolysis, and hen's egg test-chorioallantoic membrane (HET-CAM) test. RESULT: The results showed that the characteristics of the SNP-DMAP-MTX formulas meet the requirements for transdermal delivery, with the particle size of 189.09 ±12.30 nm and absorption efficiency of 65.40 ± 5.0%. The hemolysis and HET-CAM testing indicate that this formula was non-toxic and non-irritating. Ex vivo permeation shows a concentration of 51.50 ± 3.20 µg/mL of SNP-DMAP-MTX in PBS pH 5.0. The pharmacokinetic profile of SNP-DMAP-MTX showed selectivity and sustained release compared with oral and DMAP-MTX with values of t1/2 (4.88 ± 0 h), Tmax (8 ± 0 h), Cmax (0.50 ± 0.04 µg/mL), AUC (3.15 ± 0.54 µg/mL.h), and mean residence time (MRT) (9.13 ± 0 h). CONCLUSION: The developed SNP-DMAP-MTX has been proven to deliver MTX transdermal and selectively at the RA site, potentially avoiding conventional MTX side effects and enhancing the effectiveness of RA therapy.


Subject(s)
Arthritis, Rheumatoid , Nanoparticles , Animals , Female , Humans , Methotrexate , Chickens , Hemolysis , Drug Carriers/therapeutic use , Arthritis, Rheumatoid/drug therapy , Hydrogen-Ion Concentration
3.
J Med Life ; 15(10): 1311-1317, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36420296

ABSTRACT

The management of human resources is essential in a hospital, and its success can be seen based on the turnover rate of nursing personnel (nurses and midwives). In a hospital, the nursing personnel represents the largest number of professionals, and its performance greatly affects the effectiveness of services for patients. This study examined how organizations can predict turnover rates through intention to stay. Furthermore, this study aimed to explain the influence of cooperative behavior (both perceived external prestige and internal respect that affects organizational identification), which correlates with the intention to stay of nursing personnel. This quantitative research had a cross-sectional design, using a survey. The population involved non-permanent workers in five private and government hospitals. The sample consisted of 147 respondents. This study indicates that cooperative behavior showed positivity and significantly influenced the intention to stay, based on a 95% confidence degree. Perceived external prestige (p=0.009) and perceived internal respect (p=0.002) showed positivity and significantly influenced organizational identification. Perceived internal respect directly influenced the intention to stay (p=0.000), and organizational identification showed positivity and significantly influenced the intention to stay (p=0.000). Hospital management is more active in improving efforts and programs to improve the behavior of cooperatives, which is actually more dominant in non-financial aspects.


Subject(s)
Intention , Nurses , Humans , Cooperative Behavior , Cross-Sectional Studies , Delivery of Health Care
SELECTION OF CITATIONS
SEARCH DETAIL
...