Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Evol Appl ; 3(5-6): 466-72, 2010 Sep.
Article in English | MEDLINE | ID: mdl-25567939

ABSTRACT

Despite the optimism of some molecular biologists, natural selection among the wild ancestors of crops is unlikely to have missed simple genetic improvements that would consistently have enhanced individual fitness. Tradeoff-free opportunities for further improvement of crop traits like photosynthetic efficiency or drought tolerance may therefore be elusive. Opportunities linked to acceptable tradeoffs may be abundant, however. Tradeoffs between individual competitiveness and the collective productivity of plant communities (e.g. those linked to height) have been key to past increases in yield potential. Solar tracking by leaves could involve such tradeoffs, if photosynthetic benefits to tracking leaves are outweighed by increased shading of leaves lower in the canopy. This hypothesis was tested using rotation in the horizontal plane to disrupt solar tracking in alfalfa. In sparse canopies, solar tracking increased net canopy photosynthesis, but rarely by more than 3%. As leaf area increased, solar tracking tended to decrease net canopy photosynthesis, despite edge effects in our 1-m(2) artificial communities, which probably exaggerated net photosynthetic benefits of tracking. Computer modeling suggested that the season-long effects of solar tracking on community productivity can be negative. Solar tracking may have persisted, nonetheless, because individuals whose leaves track the sun increase shading of competitors.

2.
J Agric Food Chem ; 55(21): 8302-9, 2007 Oct 17.
Article in English | MEDLINE | ID: mdl-17892260

ABSTRACT

Diffuse reflectance Fourier transform mid infrared (FTMIR) and near-infrared spectroscopy (FTNIR) were compared to scanning monochromator-grating-based near-infrared spectroscopy (SMNIR), for their ability to quantify fatty acids (FA) in forages. A total of 182 samples from thirteen different forage cultivars and three different harvest times were analyzed. Three calibration analyses were conducted for lauric (C12:0), myristic (C14:0), palmitic (C16:0), stearic (C18:0), palmitoleic (C16:1), oleic (C18:1), linoleic (C18:2), and alpha-linolenic (C18:3) acids. When all samples were used in a one-out partial least squares (PLS) calibration, the average R (2) were FTNIR (0.95) > SMNIR (0.94) > FTMIR (0.91). Constituents C18:2 and C16:0 had among the highest R (2) regardless of the spectroscopic method used. The FTNIR did better for C12:0, C14:0, and C18:3. The SMNIR did better for C16:0, C16:1, C18:0, C18:1, and C18:2. A second set of calibrations developed with half of the samples as the calibration set and the rest as the validation set showed that all the methods produce acceptable calibrations, with calibration R (2) above 0.9 for most constituents. However, the SMNIR had a better average calibration relative error than the FTNIR, which was slightly better than the FTMIR. A third set of calibration equations developed using 100 random PLS runs with the 182 samples split randomly also shows that the three spectral methods are satisfactory for predicting FA. It is not clear whether any of the spectral methods is distinctly better than another. Calibration R (2) and validation R (2) were higher for most FA with the SMNIR than the FTMIR and FTNIR.


Subject(s)
Animal Feed/analysis , Fatty Acids/analysis , Spectroscopy, Fourier Transform Infrared , Spectroscopy, Near-Infrared , Plants, Edible/chemistry , Reproducibility of Results
3.
J Agric Food Chem ; 54(9): 3186-92, 2006 May 03.
Article in English | MEDLINE | ID: mdl-16637670

ABSTRACT

Near-infrared reflectance spectroscopy (NIRS) was evaluated as a possible alternative to gas chromatography (GC) for the quantitative analysis of fatty acids in forages. Herbage samples from 11 greenhouse-grown forage species (grasses, legumes, and forbs) were collected at three stages of growth. Samples were freeze-dried, ground, and analyzed by GC and NIRS techniques. Half of the 195 samples were used to develop an NIRS calibration file for each of eight fatty acids, with the remaining half used as a validation data set. Spectral data, collected over a wavelength range of 1100-2498 nm, were regressed against GC data to develop calibration equations for lauric (C12:0), myristic (C14:0), palmitic (C16:0), stearic (C18:0), palmitoleic (C16:1), oleic (C18:1), linoleic (C18:2), and alpha-linolenic (C18:3) acids. Calibration equations had high coefficients of determination for calibration (0.93-0.99) and cross-validation (0.89-0.98), and standard errors of calibration and cross-validation were < 20% of the respective means. Simple linear regressions of NIRS results against GC data for the validation data set had r2 values ranging from 0.86 to 0.97. Regression slopes for C12:0, C14:0, C16:0, C18:0, C16:1, C18:2, and C18:3 were not significantly different (P = 0.05) from 1.0. The regression slope for C18:1 was 1.1. The ratio of standard error of prediction to standard deviation was > 3.0 for all fatty acids except C12:0 (2.6) and C14:0 (2.9). Validation statistics indicate that NIRS has high prediction ability for fatty acids in forages. Calibration equations developed using data for all plant materials accurately predicted concentrations of C16:0, C18:2, and C18:3 in individual plant species. Accuracy of prediction was less, but acceptable, for fatty acids (C12:0, C14:0, C18:0, C16:1, and C18:1) that were less prevalent.


Subject(s)
Animal Feed/analysis , Fatty Acids/analysis , Spectroscopy, Near-Infrared , Calibration , Chromatography, Gas , Fabaceae/chemistry , Poaceae/chemistry , Reproducibility of Results
4.
J Agric Food Chem ; 53(26): 10068-73, 2005 Dec 28.
Article in English | MEDLINE | ID: mdl-16366696

ABSTRACT

Managing the fatty acid composition of grazing ruminant diets could lead to meat and milk products that have higher conjugated linoleic acid (CLA) concentrations, but forage fatty acid dynamics must be more fully understood for a range of forages before grazing systems can be specified. The fatty acid profiles of 13 different forages, including grasses, legumes, and forbs, grown under greenhouse conditions, were determined. Three separate harvests, at 3-week intervals, were made of each plant material. alpha-Linolenic [C18:3, 7.0-38.4 mg g(-1) of dry matter (DM)], linoleic (C18:2, 2.0-10.3 mg g(-1) of DM), and palmitic (C16:0, 2.6-7.5 mg g(-1) of DM) acids were the most abundant fatty acids in all species at each harvest, together representing approximately 93% of the fatty acids present. Concentrations of fatty acids declined as plants developed, but the fractional contribution of each fatty acid to total fatty acids remained relatively stable over time. Grasses had a uniform composition across species with a mean of 66% of total fatty acids provided by C18:3, 13% by C18:2, and 14% by C16:0. The fractional contribution of C18:3 to total fatty acids was lower and more variable in forbs than in grasses. Intake of fatty acid by grazing ruminants would be affected by the forage species consumed.


Subject(s)
Animal Feed/analysis , Fatty Acids/analysis , Animals , Cattle , Chromatography, Gas , Plants/chemistry , alpha-Linolenic Acid/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...