Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Virology ; 540: 195-206, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31929001

ABSTRACT

Respiratory syncytial virus (RSV) infection can cause mucus overproduction and bronchiolitis in infants leading to severe disease and hospitalization. As a therapeutic strategy, immune modulatory agents may help prevent RSV-driven immune responses that cause severe airway disease. We developed a high throughput screen to identify compounds that reduced RSV-driven mucin 5AC (Muc5AC) expression and identified dexamethasone. Despite leading to a pronounced reduction in RSV-driven Muc5AC, dexamethasone increased RSV infection in vitro and delayed viral clearance in mice. This correlated with reduced expression of a subset of immune response genes and reduced lymphocyte infiltration in vivo. Interestingly, dexamethasone increased RSV infection levels without altering antiviral interferon signaling. In summary, the immunosuppressive activities of dexamethasone had favorable inhibitory effects on RSV-driven mucus production yet prevented immune defense activities that limit RSV infection in vitro and in vivo. These findings offer an explanation for the lack of efficacy of glucocorticoids in RSV-infected patients.


Subject(s)
Dexamethasone/pharmacology , Interferons/metabolism , Mucus/metabolism , Respiratory Syncytial Virus Infections/metabolism , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/drug effects , Signal Transduction/drug effects , Virus Replication/drug effects , Animals , Cell Line , Cytokines/metabolism , Gene Regulatory Networks , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate , Mice , Mucin 5AC/genetics , Mucin 5AC/metabolism , Respiratory Mucosa/metabolism , Respiratory Mucosa/virology , Respiratory Syncytial Virus Infections/genetics
2.
Hepatol Commun ; 3(8): 1085-1097, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31388629

ABSTRACT

Farnesoid X receptor (FXR) agonism is emerging as an important potential therapeutic mechanism of action for multiple chronic liver diseases. The bile acid-derived FXR agonist obeticholic acid (OCA) has shown promise in a phase 2 study in patients with nonalcoholic steatohepatitis (NASH). Here, we report efficacy of the novel nonbile acid FXR agonist tropifexor (LJN452) in two distinct preclinical models of NASH. The efficacy of tropifexor at <1 mg/kg doses was superior to that of OCA at 25 mg/kg in the liver in both NASH models. In a chemical and dietary model of NASH (Stelic animal model [STAM]), tropifexor reversed established fibrosis and reduced the nonalcoholic fatty liver disease activity score and hepatic triglycerides. In an insulin-resistant obese NASH model (amylin liver NASH model [AMLN]), tropifexor markedly reduced steatohepatitis, fibrosis, and profibrogenic gene expression. Transcriptome analysis of livers from AMLN mice revealed 461 differentially expressed genes following tropifexor treatment that included a combination of signatures associated with reduction of oxidative stress, fibrogenesis, and inflammation. Conclusion: Based on preclinical validation in animal models, tropifexor is a promising investigational therapy that is currently under phase 2 development for NASH.

3.
Nat Methods ; 15(11): 941-946, 2018 11.
Article in English | MEDLINE | ID: mdl-30297964

ABSTRACT

CRISPR-Cas9 screening allows genome-wide interrogation of gene function. Currently, to achieve the high and uniform Cas9 expression desirable for screening, one needs to engineer stable and clonal Cas9-expressing cells-an approach that is not applicable in human primary cells. Guide Swap permits genome-scale pooled CRISPR-Cas9 screening in human primary cells by exploiting the unexpected finding that editing by lentivirally delivered, targeted guide RNAs (gRNAs) occurs efficiently when Cas9 is introduced in complex with nontargeting gRNA. We validated Guide Swap in depletion and enrichment screens in CD4+ T cells. Next, we implemented Guide Swap in a model of ex vivo hematopoiesis, and identified known and previously unknown regulators of CD34+ hematopoietic stem and progenitor cell (HSPC) expansion. We anticipate that this platform will be broadly applicable to other challenging cell types, and thus will enable discovery in previously inaccessible but biologically relevant human primary cell systems.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems , Gene Editing , Genome, Human , Hematopoietic Stem Cells/metabolism , RNA, Guide, Kinetoplastida/genetics , CD8-Positive T-Lymphocytes/cytology , Cells, Cultured , HEK293 Cells , Hematopoietic Stem Cells/cytology , Humans
4.
Nature ; 537(7619): 229-233, 2016 09 08.
Article in English | MEDLINE | ID: mdl-27501246

ABSTRACT

Chagas disease, leishmaniasis and sleeping sickness affect 20 million people worldwide and lead to more than 50,000 deaths annually. The diseases are caused by infection with the kinetoplastid parasites Trypanosoma cruzi, Leishmania spp. and Trypanosoma brucei spp., respectively. These parasites have similar biology and genomic sequence, suggesting that all three diseases could be cured with drugs that modulate the activity of a conserved parasite target. However, no such molecular targets or broad spectrum drugs have been identified to date. Here we describe a selective inhibitor of the kinetoplastid proteasome (GNF6702) with unprecedented in vivo efficacy, which cleared parasites from mice in all three models of infection. GNF6702 inhibits the kinetoplastid proteasome through a non-competitive mechanism, does not inhibit the mammalian proteasome or growth of mammalian cells, and is well-tolerated in mice. Our data provide genetic and chemical validation of the parasite proteasome as a promising therapeutic target for treatment of kinetoplastid infections, and underscore the possibility of developing a single class of drugs for these neglected diseases.


Subject(s)
Chagas Disease/drug therapy , Kinetoplastida/drug effects , Kinetoplastida/enzymology , Leishmaniasis/drug therapy , Proteasome Endopeptidase Complex/drug effects , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/therapeutic use , Pyrimidines/pharmacology , Triazoles/pharmacology , Trypanosomiasis, African/drug therapy , Animals , Chagas Disease/parasitology , Chymotrypsin/antagonists & inhibitors , Chymotrypsin/metabolism , Disease Models, Animal , Female , Humans , Inhibitory Concentration 50 , Leishmaniasis/parasitology , Mice , Molecular Structure , Molecular Targeted Therapy , Proteasome Inhibitors/adverse effects , Proteasome Inhibitors/classification , Pyrimidines/adverse effects , Pyrimidines/chemistry , Pyrimidines/therapeutic use , Species Specificity , Triazoles/adverse effects , Triazoles/chemistry , Triazoles/therapeutic use , Trypanosomiasis, African/parasitology
5.
Proc Natl Acad Sci U S A ; 107(46): 20045-50, 2010 Nov 16.
Article in English | MEDLINE | ID: mdl-21037109

ABSTRACT

Plasmodium vivax causes 25-40% of malaria cases worldwide, yet research on this human malaria parasite has been neglected. Nevertheless, the recent publication of the P. vivax reference genome now allows genomics and systems biology approaches to be applied to this pathogen. We show here that whole-genome analysis of the parasite can be achieved directly from ex vivo-isolated parasites, without the need for in vitro propagation. A single isolate of P. vivax obtained from a febrile patient with clinical malaria from Peru was subjected to whole-genome sequencing (30× coverage). This analysis revealed over 18,261 single-nucleotide polymorphisms (SNPs), 6,257 of which were further validated using a tiling microarray. Within core chromosomal genes we find that one SNP per every 985 bases of coding sequence distinguishes this recent Peruvian isolate, designated IQ07, from the reference Salvador I strain obtained in 1972. This full-genome sequence of an uncultured P. vivax isolate shows that the same regions with low numbers of aligned sequencing reads are also highly variable by genomic microarray analysis. Finally, we show that the genes containing the largest ratio of nonsynonymous-to-synonymous SNPs include two AP2 transcription factors and the P. vivax multidrug resistance-associated protein (PvMRP1), an ABC transporter shown to be associated with quinoline and antifolate tolerance in Plasmodium falciparum. This analysis provides a data set for comparative analysis with important potential for identifying markers for global parasite diversity and drug resistance mapping studies.


Subject(s)
Drug Resistance/genetics , Genes, Protozoan/genetics , Oligonucleotide Array Sequence Analysis/methods , Plasmodium vivax/genetics , Selection, Genetic , Sequence Analysis, DNA/methods , Erythrocytes/parasitology , Gene Expression Regulation , Humans , Leukocytes/parasitology , Malaria Vaccines/immunology , Multigene Family/genetics , Mutation/genetics , Peru , Plasmodium vivax/immunology , Plasmodium vivax/isolation & purification , Polymorphism, Genetic , Sequence Alignment , Transcription Factors/genetics
6.
Vaccine ; 27(8): 1201-9, 2009 Feb 18.
Article in English | MEDLINE | ID: mdl-19135497

ABSTRACT

An attenuated Mycobacterium bovisRD1 deletion (DeltaRD1) mutant of the Ravenel strain was constructed, characterized, and sequenced. This M. bovis DeltaRD1 vaccine strain administered to calves at 2 weeks of age provided similar efficacy as M. bovis bacillus Calmette Guerin (BCG) against low dose, aerosol challenge with virulent M. bovis at 3.5 months of age. Approximately 4.5 months after challenge, both DeltaRD1- and BCG-vaccinates had reduced tuberculosis (TB)-associated pathology in lungs and lung-associated lymph nodes and M. bovis colonization of tracheobronchial lymph nodes as compared to non-vaccinates. Mean central memory responses elicited by either DeltaRD1 or BCG prior to challenge correlated with reduced pathology and bacterial colonization. Neither DeltaRD1 or BCG elicited IFN-gamma responses to rESAT-6:CFP-10 prior to challenge, an emerging tool for modern TB surveillance programs. The DeltaRD1 strain may prove useful for bovine TB vaccine programs, particularly if additional mutations are included to improve safety and immunogenicity.


Subject(s)
Mycobacterium bovis/genetics , Mycobacterium bovis/immunology , Tuberculosis Vaccines/immunology , Tuberculosis, Bovine/prevention & control , Aerosols , Animals , Animals, Newborn , Cattle , Colony Count, Microbial , DNA, Bacterial/genetics , Female , Immunologic Memory , Lung/pathology , Lymph Nodes/microbiology , Lymph Nodes/pathology , Mice , Mice, SCID , Mycobacterium bovis/isolation & purification , Sequence Analysis, DNA , Sequence Deletion , Survival Analysis , Tuberculosis Vaccines/genetics , Tuberculosis, Bovine/immunology , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology
7.
J Neurosci ; 27(9): 2163-75, 2007 Feb 28.
Article in English | MEDLINE | ID: mdl-17329413

ABSTRACT

Deafness is the most common form of sensory impairment in the human population and is frequently caused by recessive mutations. To obtain animal models for recessive forms of deafness and to identify genes that control the development and function of the auditory sense organs, we performed a forward genetics screen in mice. We identified 13 mouse lines with defects in auditory function and six lines with auditory and vestibular defects. We mapped several of the affected genetic loci and identified point mutations in four genes. Interestingly, all identified genes are expressed in mechanosensory hair cells and required for their function. One mutation maps to the pejvakin gene, which encodes a new member of the gasdermin protein family. Previous studies have described two missense mutations in the human pejvakin gene that cause nonsyndromic recessive deafness (DFNB59) by affecting the function of auditory neurons. In contrast, the pejvakin allele described here introduces a premature stop codon, causes outer hair cell defects, and leads to progressive hearing loss. We also identified a novel allele of the human pejvakin gene in an Iranian pedigree that is afflicted with progressive hearing loss. Our findings suggest that the mechanisms of pathogenesis associated with pejvakin mutations are more diverse than previously appreciated. More generally, our findings demonstrate that recessive screens in mice are powerful tools for identifying genes that control the development and function of mechanosensory hair cells and cause deafness in humans, as well as generating animal models for disease.


Subject(s)
Deafness/genetics , Hair Cells, Auditory, Outer/physiology , Neoplasm Proteins/metabolism , Point Mutation , Animals , Base Sequence , Chromosome Mapping , Deafness/chemically induced , Disease Models, Animal , Ethylnitrosourea/analogs & derivatives , Female , Genes, Recessive , Genetic Testing , Hair Cells, Auditory, Outer/cytology , Hair Cells, Auditory, Outer/pathology , Humans , Male , Membrane Proteins/genetics , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mutagens , Pedigree , Psychomotor Agitation/genetics , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...