Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Cereb Blood Flow Metab ; 41(11): 2897-2906, 2021 11.
Article in English | MEDLINE | ID: mdl-34013806

ABSTRACT

Using the cranial window technique, we investigated acute effects of head cooling on cerebral vascular functions in newborn pigs. Head cooling lowered the rectal and extradural brain temperatures to 34.3 ± 0.6°C and 26.1 ± 0.6°C, respectively. During the 3-h hypothermia period, responses of pial arterioles to endothelium-dependent dilators bradykinin and glutamate were reduced, whereas the responses to hypercapnia and an endothelium-independent dilator sodium nitroprusside (SNP) remained intact. All vasodilator responses were restored after rewarming, suggesting that head cooling did not produce endothelial injury. We tested the hypothesis that the cold-sensitive TRPM8 channel is involved in attenuation of cerebrovascular functions. TRPM8 is immunodetected in cerebral vessels and in the brain parenchyma. During normothermia, the TRPM8 agonist icilin produced constriction of pial arterioles that was antagonized by the channel blocker AMTB. Icilin reduced dilation of pial arterioles to bradykinin and glutamate but not to hypercapnia and SNP, thus mimicking the effects of head cooling on vascular functions. AMTB counteracted the impairment of endothelium-dependent vasodilation caused by hypothermia or icilin. Overall, mild hypothermia produced by head cooling leads to acute reversible reduction of selected endothelium-dependent cerebral vasodilator functions via TRPM8 activation, whereas cerebral arteriolar smooth muscle functions are largely preserved.


Subject(s)
Brain/blood supply , Cerebrovascular Circulation/drug effects , Endothelium/drug effects , Hypothermia, Induced/adverse effects , TRPM Cation Channels/drug effects , Animals , Animals, Newborn , Arterioles/drug effects , Arterioles/physiopathology , Body Temperature/physiology , Bradykinin/analysis , Cerebrovascular Circulation/physiology , Endothelium/physiopathology , Female , Glutamic Acid/analysis , Head , Hypercapnia/physiopathology , Hypothermia, Induced/methods , Male , Nitroprusside/metabolism , Nitroprusside/pharmacology , Pyrimidinones/pharmacology , Rewarming/adverse effects , Sodium Channel Agonists/pharmacology , Swine , TRPM Cation Channels/immunology , TRPM Cation Channels/metabolism , Vasodilation/drug effects , Vasodilator Agents/metabolism , Vasodilator Agents/pharmacology
2.
J Cereb Blood Flow Metab ; 40(10): 1987-1996, 2020 10.
Article in English | MEDLINE | ID: mdl-31594422

ABSTRACT

We investigated the effects of sulforaphane (SFN), an isothiocyanate from cruciferous vegetables, in the regulation of cerebral blood flow using cranial windows in newborn pigs. SFN administered topically (10 µM-1 mM) or systemically (0.4 mg/kg ip) caused immediate and sustained dilation of pial arterioles concomitantly with elevated H2S in periarachnoid cortical cerebrospinal fluid. H2S is a potent vasodilator of cerebral arterioles. SFN is not a H2S donor but it acts via stimulating H2S generation in the brain catalyzed by cystathionine γ-lyase (CSE) and cystathionine ß-synthase (CBS). CSE/CBS inhibitors propargylglycine, ß-cyano-L-alanine, and aminooxyacetic acid blocked brain H2S generation and cerebral vasodilation caused by SFN. The SFN-elicited vasodilation requires activation of potassium channels in cerebral arterioles. The inhibitors of KATP and BK channels glibenclamide, paxilline, and iberiotoxin blocked the vasodilator effects of topical and systemic SFN, supporting the concept that H2S is the mediator of the vasodilator properties of SFN in cerebral circulation. Overall, we provide first evidence that SFN is a brain permeable compound that increases cerebral blood flow via a non-genomic mechanism that is mediated via activation of CSE/CBS-catalyzed H2S formation in neurovascular cells followed by H2S-induced activation of KATP and BK channels in arteriolar smooth muscle.


Subject(s)
Arterioles/metabolism , Cerebrovascular Circulation/drug effects , Hydrogen Sulfide/metabolism , Isothiocyanates/pharmacology , KATP Channels/metabolism , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Muscle, Smooth, Vascular/metabolism , Vasodilator Agents/pharmacology , Animals , Animals, Newborn , Arterioles/drug effects , Brain/metabolism , Cystathionine beta-Synthase/antagonists & inhibitors , Cystathionine beta-Synthase/metabolism , Cystathionine gamma-Lyase/antagonists & inhibitors , Cystathionine gamma-Lyase/metabolism , Enzyme Inhibitors/pharmacology , Female , Isothiocyanates/antagonists & inhibitors , KATP Channels/drug effects , Large-Conductance Calcium-Activated Potassium Channels/drug effects , Male , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Sulfoxides , Swine
3.
Am J Physiol Heart Circ Physiol ; 315(4): H978-H988, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30028198

ABSTRACT

Neonatal asphyxia leads to cerebrovascular disease and neurological complications via a mechanism that may involve oxidative stress. Carbon monoxide (CO) is an antioxidant messenger produced via a heme oxygenase (HO)-catalyzed reaction. Cortical astrocytes are the major cells in the brain that express constitutive HO-2 isoform. We tested the hypothesis that CO, produced by astrocytes, has cerebroprotective properties during neonatal asphyxia. We developed a survival model of prolonged asphyxia in newborn pigs that combines insults of severe hypoxia, hypercapnia, and acidosis while avoiding extreme hypotension and cerebral blood flow reduction. During the 60-min asphyxia, CO production by brain and astrocytes was continuously elevated. Excessive formation of reactive oxygen species during asphyxia/reventilation was potentiated by the HO inhibitor tin protoporphyrin, suggesting that endogenous CO has antioxidant effects. Cerebral vascular outcomes tested 24 and 48 h after asphyxia demonstrated the sustained impairment of cerebral vascular responses to astrocyte- and endothelium-specific vasodilators. Postasphyxia cerebral vascular dysfunction was aggravated in newborn pigs pretreated with tin protoporphyrin to inhibit brain HO/CO. The CO donor CO-releasing molecule-A1 (CORM-A1) reduced brain oxidative stress during asphyxia/reventilation and prevented postasphyxia cerebrovascular dysfunction. The antioxidant and antiapoptotic effects of HO/CO and CORM-A1 were confirmed in primary cultures of astrocytes from the neonatal pig brain exposed to glutamate excitotoxicity. Overall, prolonged neonatal asphyxia leads to neurovascular injury via an oxidative stress-mediated mechanism that is counteracted by an astrocyte-based constitutive antioxidant HO/CO system. We propose that gaseous CO or CO donors can be used as novel approaches for prevention of neonatal brain injury caused by prolonged asphyxia. NEW & NOTEWORTHY Asphyxia in newborn infants may lead to lifelong neurological disabilities. Using the model of prolonged asphyxia in newborn piglets, we propose novel antioxidant therapy based on systemic administration of low doses of a carbon monoxide donor that prevent loss of cerebral blood flow regulation and may improve the neurological outcome of asphyxia.


Subject(s)
Arterioles/drug effects , Asphyxia Neonatorum/drug therapy , Astrocytes/drug effects , Boranes/pharmacology , Carbon Dioxide/metabolism , Carbonates/pharmacology , Cerebrovascular Circulation/drug effects , Cerebrovascular Disorders/prevention & control , Neuroprotective Agents/pharmacology , Pia Mater/blood supply , Animals , Animals, Newborn , Antioxidants/pharmacology , Apoptosis/drug effects , Arterioles/metabolism , Arterioles/physiopathology , Asphyxia Neonatorum/complications , Asphyxia Neonatorum/metabolism , Asphyxia Neonatorum/physiopathology , Astrocytes/metabolism , Astrocytes/pathology , Blood Flow Velocity , Cells, Cultured , Cerebrovascular Disorders/etiology , Cerebrovascular Disorders/metabolism , Cerebrovascular Disorders/physiopathology , Disease Models, Animal , Female , Heme Oxygenase (Decyclizing)/metabolism , Heme Oxygenase-1/metabolism , Male , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Sus scrofa , Time Factors , Vasodilation/drug effects
4.
Pediatr Res ; 82(5): 881-887, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28665933

ABSTRACT

BackgroundThe potential contribution of sex-related variables to cerebrovascular functions in neonates remains elusive. Newborn piglets provide a translationally relevant model for studying the effects of seizures in the neonatal brain. The present study investigated whether sex differences contribute to cerebrovascular functions in healthy and epileptic newborn pigs.MethodsEpileptic seizures were induced in female and male newborn pigs by bicuculline. An antioxidant drug, the carbon monoxide-releasing molecule CORM-A1, was administered enterally before or during seizures. The responses of pial arterioles to endothelium-, astrocyte-, and vascular smooth muscle-dependent vasodilators were tested in intact and 48-h postictal piglets using the cranial window technique.ResultsIn intact newborn pigs, we did not observe any sex-related differences in cerebrovascular functions. In the postictal male and female newborn pigs, a marked reduction in responses of pial arterioles to endothelium- and astrocyte-dependent vasodilators was detected. CORM-A1, administered before or during seizures, greatly improved the outcome of seizures on cerebrovascular functions in both male and female piglets.ConclusionWe found no evidence of sex-related differences in cerebral vasodilator functions in control and epileptic newborn pigs. In both male and female newborns, epileptic seizures lead to prolonged cerebral vascular dysfunction that is effectively prevented by CORM-A1 therapy.


Subject(s)
Antioxidants/pharmacology , Boranes/pharmacology , Carbonates/pharmacology , Cerebral Arteries/drug effects , Cerebral Arteries/physiopathology , Cerebrovascular Disorders/prevention & control , Pia Mater/blood supply , Seizures/drug therapy , Vasodilation/drug effects , Animals , Animals, Newborn , Astrocytes/drug effects , Astrocytes/metabolism , Bicuculline , Cerebral Arteries/metabolism , Cerebrovascular Disorders/etiology , Cerebrovascular Disorders/physiopathology , Disease Models, Animal , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Female , Humans , Male , Seizures/chemically induced , Seizures/metabolism , Seizures/physiopathology , Sex Factors , Sus scrofa , Time Factors , Vasodilator Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...