Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-23647107

ABSTRACT

This article provides a review of the routine methods currently utilized for total naphthenic acid analyses. There is a growing need to develop chemical methods that can selectively distinguish compounds found within industrially derived oil sands process affected waters (OSPW) from those derived from the natural weathering of oil sands deposits. Attention is thus given to the characterization of other OSPW components such as oil sands polar organic compounds, PAHs, and heavy metals along with characterization of chemical additives such as polyacrylamide polymers and trace levels of boron species. Environmental samples discussed cover the following matrices: OSPW containments, on-lease interceptor well systems, on- and off-lease groundwater, and river and lake surface waters. There are diverse ranges of methods available for analyses of total naphthenic acids. However, there is a need for inter-laboratory studies to compare their accuracy and precision for routine analyses. Recent advances in high- and medium-resolution mass spectrometry, concomitant with comprehensive mass spectrometry techniques following multi-dimensional chromatography or ion-mobility separations, have allowed for the speciation of monocarboxylic naphthenic acids along with a wide range of other species including humics. The distributions of oil sands polar organic compounds, particularly the sulphur containing species (i.e., OxS and OxS2) may allow for distinguishing sources of OSPW. The ratios of oxygen- (i.e., Ox) and nitrogen-containing species (i.e., NOx, and N2Ox) are useful for differentiating organic components derived from OSPW from natural components found within receiving waters. Synchronous fluorescence spectroscopy also provides a powerful screening technique capable of quickly detecting the presence of aromatic organic acids contained within oil sands naphthenic acid mixtures. Synchronous fluorescence spectroscopy provides diagnostic profiles for OSPW and potentially impacted groundwater that can be compared against reference groundwater and surface water samples. Novel applications of X-ray absorption near edge spectroscopy (XANES) are emerging for speciation of sulphur-containing species (both organic and inorganic components) as well as industrially derived boron-containing species. There is strong potential for an environmental forensics application of XANES for chemical fingerprinting of weathered sulphur-containing species and industrial additives in OSPW.


Subject(s)
Carboxylic Acids/analysis , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Mass Spectrometry , Polycyclic Aromatic Hydrocarbons/analysis
2.
Chemosphere ; 68(3): 518-27, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17287002

ABSTRACT

Naphthenic acids are a complex mixture of carboxylic acids that occur naturally in petroleum. During the extraction of bitumen from the oil sands in northeastern Alberta, Canada, naphthenic acids are released into the aqueous phase and these acids become the most toxic components in the process-affected water. Although previous studies have exposed fish to naphthenic acids or oil sands process-affected waters, there has been no analytical method to specifically detect naphthenic acids in fish. Here, we describe a qualitative method to specifically detect these acids. In 96-h static renewal tests, rainbow trout (Oncorhynchus mykiss) fingerlings were exposed to three different treatments: (1) fed pellets that contained commercial naphthenic acids (1.5mg g(-1) of food), (2) kept in tap water that contained commercial naphthenic acids (3mg l(-1)) and (3) kept in an oil sands process-affected water that contained 15mg naphthenic acids l(-1). Five-gram samples of fish were homogenized and extracted, then the mixture of free fatty acids and naphthenic acids was isolated from the extract using strong anion exchange chromatography. The mixture was derivatized and analyzed by gas chromatography-mass spectrometry. Reconstructed ion chromatograms (m/z=267) selectively detected naphthenic acids. These acids were present in each fish that was exposed to naphthenic acids, but absent in fish that were not exposed to naphthenic acids. The minimum detectable concentration was about 1microg naphthenic acids g(-1) of fish.


Subject(s)
Carboxylic Acids/metabolism , Oncorhynchus mykiss/metabolism , Petroleum/toxicity , Silicon Dioxide/chemistry , Animal Feed/analysis , Animals , Carboxylic Acids/chemistry , Petroleum/analysis , Petroleum/metabolism , Water/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism , Water Pollution, Chemical
3.
Anal Chem ; 78(24): 8354-61, 2006 Dec 15.
Article in English | MEDLINE | ID: mdl-17165827

ABSTRACT

A rapidly expanding oil sands industry in Canada produces and indefinitely stores large volumes of toxic aqueous tailings containing high concentrations of naphthenic acids (NAs), a complex mixture of naturally occurring aliphatic or alicyclic carboxylic acids. Although there is an acknowledged need to reduce the environmental risks posed by NAs, little is understood about their environmental fate due to a lack of appropriate analytical methods. A dilute-and-shoot reversed-phase capillary HPLC/QTOF-MS method was developed that combines high specificity and sensitivity, quantitative capabilities, the ability to detect novel transformation products, and new structural information within each NA isomer class. HPLC separated NAs, based on carbon number, degree of cyclization, and the extent of alkyl branching, and in so doing increased analytical sensitivity up to 350-fold while providing additional specificity compared to infusion techniques. For tailings water, an interlaboratory study revealed many differences in isomer class profiles compared to an established GC/MS method, much of which was attributed to the misclassification of oxidized NAs (i.e., NA + O) by low-resolution GC/MS. HPLC/QTOF-MS enabled the detection of oxidized products in the same chromatographic run, and Van Krevelen diagrams were adapted to visualize the complex data. A marked decrease of retention times was evident in Syncrude tailings water compared to a commercial mixture, suggesting that tailings water is dominated by highly persistent alkyl-substituted isomers. A biodegradation study revealed that tailings water microorganisms preferentially deplete the least alkyl-substituted fraction and may be responsible for the NA profile in aged tailings water.


Subject(s)
Carboxylic Acids/analysis , Chromatography, High Pressure Liquid , Nanotechnology , Spectrometry, Mass, Electrospray Ionization , Water Pollutants, Chemical/analysis , Biodegradation, Environmental , Canada , Carbon/chemistry , Carboxylic Acids/chemistry , Cyclization , Gas Chromatography-Mass Spectrometry , Humans , Isomerism , Oxidation-Reduction , Sensitivity and Specificity
4.
J Appl Microbiol ; 99(6): 1444-54, 2005.
Article in English | MEDLINE | ID: mdl-16313417

ABSTRACT

AIMS: To isolate bacteria capable of cleaving aliphatic carbon-sulfur bonds as potential biological upgrading catalysts for the reduction of molecular weight and viscosity in heavy crude oil. METHODS AND RESULTS: Thirty-one bacterial strains isolated from enrichment cultures were able to biotransform model compounds representing the aliphatic sulfide bridges found in asphaltenes. Using gas chromatography and mass spectrometry, three types of attack were identified: alkyl chain degradation, allowing use as a carbon source; nonspecific sulfur oxidation; and sulfur-specific oxidation and carbon-sulfur bond cleavage, allowing use as a sulfur source. Di-n-octyl sulfide degradation produced octylthio- and octylsulfonyl-alkanoic acids, consistent with terminal oxidation followed by beta-oxidation reactions. Utilization of dibenzyl sulfide or 1,4-dithiane as a sulfur source was regulated by sulfate, indicating a sulfur-specific activity rather than nonspecific oxidation. Finally, several isolates were also able to use dibenzothiophene as a sulfur source, and this was the preferred organic sulfur substrate for one isolate. CONCLUSIONS: The use of commercially available alkyl sulfides in enrichment cultures gave isolates that followed a range of metabolic pathways, not just sulfur-specific attack. SIGNIFICANCE AND IMPACT OF THE STUDY: These results give new insight into biodegradation of organosulfur compounds from petroleum and for biotreatment of such compounds in chemical munitions.


Subject(s)
Bacteria/metabolism , Chemical Industry , Industrial Microbiology/methods , Petroleum , Sulfides/metabolism , Aerobiosis , Biodegradation, Environmental , Bioreactors , Carbon , Molecular Weight , Sulfur , Viscosity
5.
J Ind Microbiol Biotechnol ; 29(5): 243-54, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12407458

ABSTRACT

Nitrate addition to oil field waters stops the biogenic formation of sulfide because the activities of nitrate-reducing bacteria (NRB) suppress the activities of sulfate-reducing bacteria (SRB). In general, there are two types of NRB - the heterotrophic NRB and the chemolithotrophic NRB. Within the latter group are the nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB). To date, no study has specifically addressed the roles of these different NRB in controlling sulfide concentrations in oil field produced waters. This study used different culture media to selectively enumerate heterotrophic NRB and NR-SOB by most probable number (MPN) methods. Produced waters from three sulfide-containing western Canadian oil fields were amended with nitrate as an electron acceptor, but no exogenous electron donor was added to the serum bottle microcosms. Changes in the chemical and microbiological characteristics of the produced waters were monitored during incubation at 21 degrees C. In less than 4 days, the sulfide was removed from the waters from two of the oil fields (designated P and C), whereas nearly 27 days were required for sulfide removal from the water from the third oil field (designated N). Nitrate addition stimulated large increases in the number of the heterotrophic NRB and NR-SOB in the waters from oil fields P and C, but only the NR-SOB were stimulated in the water from oil field N. These data suggest that stimulation of the heterotrophic NRB is required for rapid removal of sulfide from oil field-produced waters.


Subject(s)
Nitrates/metabolism , Petroleum , Sulfates/metabolism , Sulfides/metabolism , Water Microbiology , Color , Oxidation-Reduction
6.
J Ind Microbiol Biotechnol ; 29(2): 83-92, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12161775

ABSTRACT

Oil fields that use water flooding to enhance oil recovery may become sour because of the production of H(2)S from the reduction of sulfate by sulfate-reducing bacteria (SRB). The addition of nitrate to produced waters can stimulate the activities of nitrate-reducing bacteria (NRB) and control sulfide production. Many previous studies have focused on chemolithotrophic bacteria that can use thiosulfate or sulfide as energy sources while reducing nitrate. Little attention has been given to heterotrophic NRB in oil field waters. Three different media were used in this study to enumerate various types of planktonic NRB present in waters from five oil fields in western Canada. The numbers of planktonic SRB and bacteria capable of growth under aerobic conditions were also determined. In general, microbial numbers in the produced waters were very low (<10 ml x (-1)) in samples taken near or at wellheads. However, the numbers increased in the aboveground facilities. No thiosulfate-oxidizing NRB were detected in the oil field waters, but other types of NRB were detected in 16 of 18 produced water samples. The numbers of heterotrophic NRB were equal to or greater than the number of sulfide-oxidizing, chemolithotrophic NRB in 12 of 15 samples. These results showed that each of the oil fields contained NRB, which might be stimulated by nitrate amendment to control H(2)S production by SRB.


Subject(s)
Bacteria/metabolism , Nitrates/metabolism , Petroleum/microbiology , Plankton/microbiology , Sulfates/metabolism , Water Microbiology , Animals , Bacteria/isolation & purification , Canada , Colony Count, Microbial , Hydrogen Sulfide/metabolism , Hydrogen-Ion Concentration , Industrial Waste , Oxidation-Reduction , Temperature , Thiosulfates/metabolism
7.
J Ind Microbiol Biotechnol ; 27(2): 80-6, 2001 Aug.
Article in English | MEDLINE | ID: mdl-11641765

ABSTRACT

Sulfide accumulation due to bacterial sulfate reduction is responsible for a number of serious problems in the oil industry. Among the strategies to control the activity of sulfate-reducing bacteria (SRB) is the use of nitrate, which can exhibit a variety of effects. We investigated the relevance of this approach to souring oil fields in Oklahoma and Alberta in which water flooding is used to enhance oil recovery. SRB and nitrate-reducing bacteria (NRB) were enumerated in produced waters from both oil fields. In the Oklahoma field, the rates of sulfate reduction ranged from 0.05 to 0.16 microM S day(-1) at the wellheads, and an order of magnitude higher at the oil-water separator. Sulfide production was greatest in the water storage tanks in the Alberta field. Microbial counts alone did not accurately reflect the potential for microbial activities. The majority of the sulfide production appeared to occur after the oil was pumped aboveground, rather than in the reservoir. Laboratory experiments showed that adding 5 and 10 mM nitrate to produced waters from the Oklahoma and Alberta oil fields, respectively, decreased the sulfide content to negligible levels and increased the numbers of NRB. This work suggests that sulfate reduction control measures can be concentrated on aboveground facilities, which will decrease the amount of sulfide reinjected into reservoirs during the disposal of oil field production waters.


Subject(s)
Industrial Waste , Nitrates/metabolism , Petroleum/microbiology , Sulfates/metabolism , Sulfides/metabolism , Waste Disposal, Fluid , Water Microbiology , Alberta , Nitrates/analysis , Nitrites/analysis , Nitrites/metabolism , Oklahoma , Oxidation-Reduction , Sulfates/analysis , Sulfides/adverse effects
8.
Appl Environ Microbiol ; 67(11): 5084-93, 2001 Nov.
Article in English | MEDLINE | ID: mdl-11679330

ABSTRACT

Several investigations have identified benzothiophene-2,3-dione in the organic solvent extracts of acidified cultures degrading dibenzothiophene via the Kodama pathway. In solution at neutral pH, the 2,3-dione exists as 2-mercaptophenylglyoxylate, which cyclizes upon acidification and is extracted as the 2,3-dione. The fate of these compounds in microbial cultures has never been determined. This study investigated the abiotic reactions of 2-mercaptophenylglyoxylate incubated aerobically in mineral salts medium at neutral pH. Oxidation led to the formation of 2-oxo-2-(2-thiophenyl)ethanoic acid disulfide, formed from two molecules of 2-mercaptophenylglyoxylate. Two sequential abiotic, net losses of both a carbon and an oxygen atom produced two additional disulfides, 2-oxo-2-(2-thiophenyl)ethanoic acid 2-benzoic acid disulfide and 2,2'-dithiosalicylic acid. The methods developed to extract and detect these three disulfides were then used for the analysis of a culture of Pseudomonas sp. strain BT1d grown on dibenzothiophene as its sole carbon and energy source. All three of the disulfides were detected, indicating that 2-mercaptophenylglyoxylate is an important, short-lived intermediate in the breakdown of dibenzothiophene via the Kodama pathway. The disulfides eluded previous investigations because of (i) their high polarity, being dicarboxylic acids; (ii) the need to lower the pH of the aqueous medium to <1 to extract them into an organic solvent such as dichloromethane; (iii) their poor solubility in organic solvents, (iv) their removal from organic extracts of cultures during filtration through the commonly used drying agent anhydrous sodium sulfate; and (v) their high molecular masses (362, 334, and 306 Da) compared to that of dibenzothiophene (184 Da).


Subject(s)
Disulfides/chemistry , Thiophenes/metabolism , Biodegradation, Environmental , Culture Media , Gas Chromatography-Mass Spectrometry , Oxidation-Reduction , Pseudomonas/growth & development , Pseudomonas/metabolism , Thiophenes/chemistry
9.
Environ Technol ; 22(6): 619-29, 2001 Jun.
Article in English | MEDLINE | ID: mdl-11482381

ABSTRACT

Natural gas in western Canada can contain up to 35% H2S. The Sulfinol process for sour gas treatment makes use of sulfolane and an amine to remove H2S and other sour components from natural gas. Sulfolane has leached into groundwaters at sour gas treatment plant sites, and poses a risk for off-site contamination. Sulfolane biodegradation was monitored in shake-flask cultures and air-sparged microcosms inoculated with uncontaminated topsoil or with sulfolane contaminated soil obtained near a Sulfinol process building at a sour gas treatment facility in western Canada. For both soils, supplementation with a source of fixed nitrogen stimulated sulfolane biodegradation. Topsoil cultures and microcosms were only slightly affected by the addition of phosphate. Contaminated soil microcosms and cultures were stimulated by phosphate addition, but not to the same degree as by the addition of nitrogen. For these cultures and microcosms, amendment with both fixed nitrogen and phosphate produced an additive effect. It was possible to predict the nutrient requirements of air-sparged microcosms inoculated with each soil type using shake-flask cultures. Shake-flask cultures require less time and effort and fewer materials than the more complex air-sparged soil microcosms, and will be useful for large-scale experiments to predict the nutrient supplements required for bioremediation of sulfolane-contaminated sites.


Subject(s)
Radiation-Protective Agents/metabolism , Soil Microbiology , Soil Pollutants/metabolism , Thiophenes/metabolism , Bacteria, Aerobic/physiology , Biodegradation, Environmental , Environmental Pollution/prevention & control , Fossil Fuels , Hydrogen Sulfide , Nitrogen/metabolism , Phosphates/metabolism
10.
Water Res ; 35(11): 2595-606, 2001 Aug.
Article in English | MEDLINE | ID: mdl-11456157

ABSTRACT

Naphthenic acids (NAs) are a complex mixture of naturally occurring acyclic and cyclic aliphatic carboxylic acids in petroleum. In the Athabasca oil sands. NAs have been identified as the largest component of dissolved organic matter in the tailings waters from oils sands extraction processes. They are the major contributor to the acute toxicity of the fine tailings wastewaters at the oil sands extraction plants in northeastern Alberta, Canada. In this study, three sources of NAs were studied, including commercially available NAs, those extracted from oil sands process-affected waters, and individual naphthenic-like surrogate compounds. Analysis by gas chromatography-mass spectrometry demonstrated differences between the commercial and extracted NAs. The NAs derived from the process-affected waters showed a short-term inhibition of methanogenesis from H2 or acetate, but with time the populations resumed methane production. It has been postulated that microbial metabolism of the carboxylated side chains of NAs would lead to methane production. The two NA mixtures failed to stimulate methanogenesis in microcosms that contained either oil sands fine tailings or domestic sewage sludge. However, in microcosms with sewage sludge, methanogenesis was stimulated by some surrogate NAs including 3-cyclohexylpropanoic acid at 400-800 mg/L, 5-cyclohexylpentanoic acid at 200 mg/L or 6-phenylhexanoic acid at 200 and 400 mg/L. When added at 200 mg/L to methanogenic microcosms containing fine tailings, 3-cyclohexylpropanoic and 4-cyclohexylbutanoic acids produced methane yields that suggested mineralization of the side chain and the ring.


Subject(s)
Carboxylic Acids/chemistry , Euryarchaeota/metabolism , Methane/metabolism , Sewage/chemistry , Water Purification/methods , Acetates/metabolism , Biodegradation, Environmental , Canada , Carboxylic Acids/analysis , Euryarchaeota/growth & development , Hydrogen/metabolism , Industrial Waste/analysis , Molecular Structure , Petroleum , Sewage/microbiology , Silicon Dioxide/analysis , Silicon Dioxide/chemistry
11.
Appl Environ Microbiol ; 67(2): 821-6, 2001 Feb.
Article in English | MEDLINE | ID: mdl-11157249

ABSTRACT

3-Hydroxy-2-formylbenzothiophene (HFBT) is a metabolite found in many bacterial cultures that degrade dibenzothiophene (DBT) via the Kodama pathway. The fate of HFBT in cultures and in the environment is unknown. In this study, HFBT was produced by a DBT-degrading bacterium and purified by sublimation. When stored in organic solvent or as a crystal, the HFBT slowly decomposed, yielding colored products. Two of these were identified as thioindigo and cis-thioindigo. The supernatant of the DBT-degrading culture contained thioindigo, which has not been reported previously as a product of DBT biodegradation. In mineral salts medium, HFBT was sufficiently stable to allow biodegradation studies with a mixed microbial culture over a 3- to 4-week period. High-performance liquid chromatography analyses showed that HFBT was removed from the medium. 2-Mercaptophenylglyoxalate, detected as benzothiophene-2,3-dione, was found in an HFBT-degrading mixed culture, and the former appears to be a metabolite of HFBT. This mixed culture also mineralized HFBT to CO2.


Subject(s)
Bacteria/metabolism , Thiophenes/isolation & purification , Thiophenes/metabolism , Culture Media , Indigo Carmine/analogs & derivatives , Indigo Carmine/metabolism , Pseudomonas/metabolism , Thiophenes/chemical synthesis , Thiophenes/chemistry
12.
Can J Microbiol ; 46(10): 927-37, 2000 Oct.
Article in English | MEDLINE | ID: mdl-11068680

ABSTRACT

In the past decade, the large tailings pond (Mildred Lake Settling Basin) on the Syncrude Canada Ltd. lease near Fort McMurray, Alta., has gone methanogenic. Currently, about 60%-80% of the flux of gas across the surface of the tailings pond is methane. As well as adding to greenhouse gas emissions, the production of methane in the fine tailings zone of this and other settling basins may affect the performance of these settling basins and impact reclamation options. Enumeration studies found methanogens (10(5)-10(6) MPN/g) within the fine tailings zone of various oil sands waste settling basins. SRB were also present (10(4)-10(5) MPN/g) with elevated numbers when sulfate was available. The methanogenic population was robust, and sample storage up to 9 months at 4 degrees C did not cause the MPN values to change. Nor was the ability of the consortium to produce methane delayed or less efficient after storage. Under laboratory conditions, fine tailings samples released 0.10-0.25 mL CH4 (at STP)/mL fine tailings. The addition of sulfate inhibited methanogenesis by stimulating bacterial competition.


Subject(s)
Euryarchaeota , Petroleum/microbiology , Sulfur-Reducing Bacteria , Water Microbiology , Colony Count, Microbial , Ecosystem , Euryarchaeota/isolation & purification , Euryarchaeota/metabolism , Industrial Waste , Methane/metabolism , Sulfates/metabolism , Sulfur-Reducing Bacteria/isolation & purification , Sulfur-Reducing Bacteria/metabolism , Water Pollution, Chemical
13.
Arch Microbiol ; 174(1-2): 111-9, 2000.
Article in English | MEDLINE | ID: mdl-10985750

ABSTRACT

Sulfolane (tetrahydrothiophene-1,1-dioxide) is used in the Sulfinol process for natural gas sweetening. At many sour-gas processing plants spills, landfills and leakage from unlined surface storage ponds have contaminated groundwaters with sulfolane. Due to its high water solubility and mobility in aquifers, sulfolane poses a risk for off-site contamination. This study investigated the aerobic biodegradation of sulfolane by two mixed microbial enrichment cultures and by three bacterial isolates. Sulfolane served as the sole C, S and energy source for these cultures. In the two mixed cultures, 60% and 80% of the sulfolane C was recovered as CO2, whereas in cultures of the three isolates only 40-42% of the substrate C was recovered as CO,. In the mixed cultures, 81% and 97% of the sulfolane S was converted to sulfate, and in the pure isolates, 55-90% of the substrate S was converted to sulfate. Thus, the mixed cultures were capable of greater mineralization than the pure isolates. One isolate, strain WP1, was identified using a combination of 16S rRNA gene sequencing, physiological traits and cell morphology. WP1 was determined to be most similar to Varioivorax paradoxus.


Subject(s)
Betaproteobacteria/metabolism , Thiophenes/metabolism , Water Microbiology , Water Pollutants, Chemical/metabolism , Aerobiosis , Base Sequence , Betaproteobacteria/genetics , Betaproteobacteria/isolation & purification , Biodegradation, Environmental , DNA Primers/genetics , Fossil Fuels , Genes, Bacterial , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Sulfites/metabolism
14.
Can J Microbiol ; 46(5): 397-409, 2000 May.
Article in English | MEDLINE | ID: mdl-10872075

ABSTRACT

Fluorene and its three heteroatomic analogs, dibenzofuran, dibenzothiophene, and carbazole, are environmental contaminants in areas impacted by spills of creosote. In addition, dibenzofuran has been used as an insecticide, and it is formed from the photolysis of chlorinated biphenyl ethers. Many biodegradation studies of dibenzofuran have considered it as a model for chlorinated dibenzofurans, which are of greater environmental concern. This paper reviews the bacterial degradation of fluorene and its analogs. These compounds are susceptible to three different modes of initial oxidation: (i) the naphthalene-like attack, in which one of the aromatic rings is oxidized to a dihydrodiol; (ii) an angular dioxygenase attack, in which the carbon bonded to the methylene group in fluorene or to the heteroatoms in the analogs, and the adjacent carbon in the aromatic ring are both oxidized; and (iii) the five-membered ring attack, in which the methylene carbon atom in fluorene or the sulfur atom in dibenzothiophene is oxidized. The metabolites, enzymology, and genetics of these transformation are summarized. Literature data are presented, indicating that the electronegativity of the atom connecting the two aromatic rings influences the attack of the angular dioxygenase. In dibenzofuran and carbazole, the connecting atoms, O and N respectively, have high electronegativities, and these compounds serve as substrates for angular dioxygenases. In contrast, the connecting atoms in dibenzothiophene and fluorene, S and C respectively, have lower electronegativities, and these atoms must be oxidized before the angular dioxygenases attack these compounds.


Subject(s)
Bacteria/metabolism , Benzofurans/metabolism , Carbazoles/metabolism , Fluorenes/metabolism , Thiophenes/metabolism , Biodegradation, Environmental
15.
Lett Appl Microbiol ; 30(2): 155-60, 2000 Feb.
Article in English | MEDLINE | ID: mdl-10736020

ABSTRACT

Three white rot fungi were compared for their ability to attack polychlorinated biphenyl (PCB) congeners in the presence and absence of the non-ionic Triton X-100 or the anionic Dowfax 8390 surfactants at half their critical micelle concentrations. Neither surfactant affected PCB biodegradation monitored by gas chromatography but the release of 14CO2 from 2,4',5-[U-14C]trichlorobiphenyl by Trametes versicolor was stimulated 12% by Triton X-100. Since mineralization is the complete metabolism of the congener and biodegradation was measured as substrate disappearance, Triton X-100 is proposed to aid intracellular solubilization of 2,4',5-trichlorobiphenyl for complete oxidation by T. versicolor.


Subject(s)
Basidiomycota/drug effects , Basidiomycota/metabolism , Polychlorinated Biphenyls/metabolism , Surface-Active Agents/pharmacology , Biodegradation, Environmental , Culture Media , Octoxynol/pharmacology , Peroxidases/metabolism
16.
Can J Microbiol ; 45(5): 360-8, 1999 May.
Article in English | MEDLINE | ID: mdl-10446711

ABSTRACT

Previous studies showed that benzothiophene and 3- and 5-methylbenzothiophenes are oxidized by some bacteria to yield their corresponding sulfones, which were not subsequently degraded. In this study, a filamentous bacterium was isolated, which grew on each of these three sulfones as its sole carbon, sulfur, and energy source. Based on 16S rRNA gene sequencing and scanning electron microscopy, the isolate was found to belong to the genus Pseudonocardia and assigned the strain designation DB1. Benzothiophene sulfone and 3-methylbenzothiophene sulfone were more readily biodegraded than 5-methylbenzothiophene sulfone, and growth on these three compounds resulted in the release of 57, 62, and 28% of the substrate carbon as CO2, respectively. The thiophene ring was also cleaved, and between 44 and 88% of the sulfur from the consumed substrate was found as sulfate and (or) sulfite. Strain DB1 grew on benzoate, dibenzothiophene sulfone, and hexadecanoic acid, but it could not grow on benzofuran, dibenzothiophene, dibenzothiophene sulfoxide, hexadecane, indole, naphthalene, phenol, 2-sulfobenzoic acid, sulfolane, benzothiophene, or 3- or 5-methylbenzothiophenes. In addition, it did not oxidize the latter three compounds to their sulfones.


Subject(s)
Actinomycetales/metabolism , Sulfones/metabolism , Actinomycetales/isolation & purification , Actinomycetales/ultrastructure , Benzoates/metabolism , Biodegradation, Environmental , Chromatography, Gas , Microscopy, Electron , Molecular Sequence Data , Palmitic Acid/metabolism , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Sulfates/analysis , Sulfites/analysis
17.
Can J Microbiol ; 45(5): 377-88, 1999 May.
Article in English | MEDLINE | ID: mdl-10446713

ABSTRACT

Diisopropanolamine (DIPA) is a "sweetening agent" used to remove hydrogen sulfide from sour natural gas, and it is a contaminant at some sour gas treatment facilities in western Canada. To investigate the biodegradation of this alkanolamine, 14C-DIPA was used in anaerobic and aerobic mineralization studies. Between 3 and 78% of the radioactivity from this compound was released as 14CO2 in sediment-enrichment cultures incubated under nitrate-reducing conditions. Similarly, 12-78% of the label was converted to 14CO2 in sediment-enrichment cultures incubated under Mn(IV)-reducing conditions. These activities were observed at 8 degrees C, a typical groundwater temperature in western Canada, and at 28 degrees C. In contrast, DIPA-degrading activity was difficult to sustain under Fe(III)-reducing conditions, and < 25% of the radioactive label from 14C-DIPA was liberated as 14CO2. Two mixed cultures and two isolates (both irregular, non-sporeforming, Gram-positive rods) were used to assess aerobic mineralization of 14C-DIPA. The aerobic mixed cultures released 73 and 79% of the radioactive label as 14CO2, whereas the pure cultures liberated only 39 and 47% as 14CO2. Between one-third and one-half of the nitrogen from DIPA was found as ammonium-N in aerobic batch cultures. These results clearly demonstrate that DIPA is mineralized under a variety of incubation conditions.


Subject(s)
Gram-Positive Rods/metabolism , Propanolamines/metabolism , Aerobiosis , Anaerobiosis , Arthrobacter/growth & development , Arthrobacter/metabolism , Biodegradation, Environmental , Gram-Positive Rods/growth & development , Iron/metabolism , Manganese/metabolism , Nitrates/metabolism , Temperature
18.
Can J Microbiol ; 44(7): 605-22, 1998 Jul.
Article in English | MEDLINE | ID: mdl-9783422

ABSTRACT

Condensed thiophenes comprise a significant portion of the organosulfur compounds in petroleum and in other products from fossil fuels. Dibenzothiophene (DBT) has served as a model compound in biodegradation studies for over two decades. However, until quite recently, few other organosulfur compounds were studied, and their fates in petroleum-contaminated environments are largely unknown. This paper presents a review of the types of organosulfur compounds found in petroleum and summarizes the scant literature on toxicity studies with condensed thiophenes. Reports on the biodegradation of benzothiophene, alkylbenzothiophenes, DBT, alkylDBTs, and naphthothiophenes are reviewed with a focus on the identification of metabolites detected in laboratory cultures. In addition, recent reports on quantitative studies with DBT and naphtho[2,1-b]thiophene indicate the existence of polar sulfur-containing metabolites that have escaped detection and identification.


Subject(s)
Petroleum/metabolism , Thiophenes/metabolism , Thiophenes/toxicity , Biodegradation, Environmental , Environmental Microbiology , Mutagenicity Tests , Petroleum/analysis , Pseudomonas/isolation & purification , Soil Microbiology , Thiophenes/analysis , Thiophenes/chemistry
19.
Appl Environ Microbiol ; 64(6): 2020-5, 1998 Jun.
Article in English | MEDLINE | ID: mdl-9603809

ABSTRACT

Two methods were used to compare the biodegradation of six polychlorinated biphenyl (PCB) congeners by 12 white rot fungi. Four fungi were found to be more active than Phanerochaete chrysosporium ATCC 24725. Biodegradation of the following congeners was monitored by gas chromatography: 2,3-dichlorobiphenyl, 4,4'-dichlorobiphenyl, 2,4',5-trichlorobiphenyl (2,4',5-TCB), 2,2',4,4'-tetrachlorobiphenyl, 2,2',5,5'-tetrachlorobiphenyl, and 2,2',4,4',5,5'-hexachlorobiphenyl. The congener tested for mineralization was 2,4',5-[U-14C]TCB. Culture supernatants were also assayed for lignin peroxidase and manganese peroxidase activities. Of the fungi tested, two strains of Bjerkandera adusta (UAMH 8258 and UAMH 7308), one strain of Pleurotus ostreatus (UAMH 7964), and Trametes versicolor UAMH 8272 gave the highest biodegradation and mineralization. P. chrysosporium ATCC 24725, a strain frequently used in studies of PCB degradation, gave the lowest mineralization and biodegradation activities of the 12 fungi reported here. Low but detectable levels of lignin peroxidase and manganese peroxidase activity were present in culture supernatants, but no correlation was observed among any combination of PCB congener biodegradation, mineralization, and lignin peroxidase or manganese peroxidase activity. With the exception of P. chrysosporium, congener loss ranged from 40 to 96%; however, these values varied due to nonspecific congener binding to fungal biomass and glassware. Mineralization was much lower,

Subject(s)
Basidiomycota/metabolism , Polychlorinated Biphenyls/metabolism , Biodegradation, Environmental , Carbon Radioisotopes , Chromatography, Gas , Minerals/metabolism , Oxidation-Reduction , Peroxidases/metabolism , Polychlorinated Biphenyls/analysis
20.
Appl Environ Microbiol ; 63(8): 3032-42, 1997 Aug.
Article in English | MEDLINE | ID: mdl-16535665

ABSTRACT

The transformations of 1,2,3,4-tetrahydrodibenzothiophene (THDBT) were investigated with pure cultures of hydrocarbon-degrading bacteria. Metabolites were extracted from cultures with dichloromethane (DCM) and analyzed by gas chromatography (GC) with flame photometric, mass, and Fourier transform infrared detectors. Three 1-methylnaphthalene (1-MN)-utilizing Pseudomonas strains oxidized the sulfur atom of THDBT to give the sulfoxide and sulfone. They also degraded the benzene ring to yield 3-hydroxy-2-formyl-4,5,6,7-tetrahydrobenzothiophene. A cell suspension of a cyclohexane-degrading bacterium oxidized the alicyclic ring to give a hydroxy-substituted THDBT and a ketone, and it oxidized the aromatic ring to give a phenol, but no ring cleavage products were detected. GC analyses with an atomic emission detector, using the sulfur-selective mode, were used to quantify the transformation products from THDBT and dibenzothiophene (DBT). The cyclohexane degrader oxidized 19% of the THDBT to three metabolites. The cometabolism of THDBT and DBT by the three 1-MN-grown Pseudomonas strains resulted in a much greater depletion of the condensed thiophenes than could be accounted for in the metabolites detected by GC analysis, but there was no evidence of sulfate release from DBT. These 1-MN-grown strains transiently accumulated 3-hydroxy-2-formylbenzothiophene (HFBT) from DBT, but it was subsequently degraded. On the other hand, Pseudomonas strain BT1d, which was maintained on DBT as a sole carbon source, accumulated 52% of the sulfur from DBT as HFBT over 7 days, and, in total, 82% of the sulfur from DBT was accounted for by the GC method used. Lyophilization of cultures grown on 1-MN with DBT and methyl esterification of the residues gave improved recoveries of total sulfur over that obtained by DCM extraction and GC analysis. This suggested that the further degradation of HFBT by these cultures leads to the formation of organosulfur compounds that are too polar to be extracted with DCM. We believe that this is the first attempt to quantify the products of DBT degradation by the so-called Kodama pathway.

SELECTION OF CITATIONS
SEARCH DETAIL
...