Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
Mar Pollut Bull ; 204: 116535, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38833948

ABSTRACT

As human activities become more intensive, a substantial number of heavy metals are discharged into estuarine or wetland environments. Due to the poor degradability, heavy metals are prone to adsorption and deposition on suspended particles in bottom sediments. Subsequently, under the influence of disturbances, there is a potential for their re-release, causing secondary pollution. To investigate the release process of the heavy metal Cr from sediment, laboratory experiments were conducted under both unidirectional flow and regular wave conditions. At the initial stage, the temporal trends of particulate (CrP) and dissolved (CrD) Chromium concentrations were both characterized by initial increments followed by stabilization and continuous escalation. Vertically, the stable concentrations of CrP and CrD increased with the presence of vegetation and the enhancement of hydrodynamics. The Elovich equation, pseudo-second-order kinetic equation, Double constant equation (Freundlich model), and parabolic diffusion equation were employed to predict the release process of CrD from bottom sediment. The Elovich equation proved most suitable for describing the release process of CrD, with an R2 exceeding 0.9. In order to assess the influence of vegetation on the Cr release process, the Stem-Reynolds were introduced to modify the Elovich equation. The final maximum error was 12 % (excluding the initial stage), which was much lower than that using the original Elovich equation (maximum error of 32 %). The study findings provide practical support for estuarine and wetland managers to formulate effective heavy metal management measures, which contribute to the conservation and sustainable management of aquatic ecosystems.


Subject(s)
Chromium , Geologic Sediments , Metals, Heavy , Water Pollutants, Chemical , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , Chromium/analysis , Metals, Heavy/analysis , Environmental Monitoring , Plants , Wetlands , Water Movements
2.
Environ Sci Pollut Res Int ; 31(22): 32091-32110, 2024 May.
Article in English | MEDLINE | ID: mdl-38648002

ABSTRACT

Pollution from heavy metals in estuaries poses potential risks to the aquatic environment and public health. The complexity of the estuarine water environment limits the accurate understanding of its pollution prediction. Field observations were conducted at seven sampling sites along the Yangtze River Estuary (YRE) during summer, autumn, and winter 2021 to analyze the concentrations of seven heavy metals (As, Cd, Cr, Pb, Cu, Ni, Zn) in water and surface sediments. The order of heavy metal concentrations in water samples from highest to lowest was Zn > As > Cu > Ni > Cr > Pb > Cd, while that in surface sediments samples was Zn > Cr > As > Ni > Pb > Cu > Cd. Human health risk assessment of the heavy metals in water samples indicated a chronic and carcinogenic risk associated with As. The risks of heavy metals in surface sediments were evaluated using the geo-accumulation index (Igeo) and potential ecological risk index (RI). Among the seven heavy metals, As and Cd were highly polluted, with Cd being the main contributor to potential ecological risks. Principal component analysis (PCA) was employed to identify the sources of the different heavy metals, revealing that As originated primarily from anthropogenic emissions, while Cd was primarily from atmospheric deposition. To further analyze the influence of water quality indicators on heavy metal pollution, an artificial neural network (ANN) model was utilized. A modified model was proposed, incorporating biochemical parameters to predict the level of heavy metal pollution, achieving an accuracy of 95.1%. This accuracy was 22.5% higher than that of the traditional model and particularly effective in predicting the maximum 20% of values. Results in this paper highlight the pollution of As and Cd along the YRE, and the proposed model provides valuable information for estimating heavy metal pollution in estuarine water environments, facilitating pollution prevention efforts.


Subject(s)
Environmental Monitoring , Estuaries , Metals, Heavy , Neural Networks, Computer , Rivers , Water Pollutants, Chemical , Metals, Heavy/analysis , China , Risk Assessment , Water Pollutants, Chemical/analysis , Rivers/chemistry , Geologic Sediments/chemistry
3.
Environ Sci Pollut Res Int ; 31(21): 30440-30453, 2024 May.
Article in English | MEDLINE | ID: mdl-38607491

ABSTRACT

The massive use of antibiotics has led to the escalation of microbial resistance in aquatic environment, resulting in an increasing concern regarding antibiotic resistance genes (ARGs), posing a serious threat to ecological safety and human health. In this study, surface water samples were collected at eight sampling sites along the Yangtze River Estuary. The seasonal and spatial distribution patterns of 10 antibiotics and target genes in two major classes (sulfonamides and tetracyclines) were analyzed. The findings indicated a high prevalence of sulfonamide and tetracycline resistance genes along the Yangtze River Estuary. Kruskal-Wallis analysis revealed significant seasonal variations in the abundance of all target genes. The accumulation of antibiotic resistance genes in the coastal area of the Yangtze River Estuary can be attributed to the influence of urban instream runoff and the discharge of effluents from wastewater treatment plants. ANISOM analysis indicated significant seasonal differences in the microbial community structure. VPA showed that environmental factors contribute the most to ARG variation. PLS-PM demonstrate that environmental factors and microbial communities pose direct effect to ARG variation. Analysis of driving factors influencing ARGs in this study may shed new insights into the mechanism of the maintenance and propagation of ARGs.


Subject(s)
Drug Resistance, Microbial , Estuaries , Rivers , Rivers/microbiology , Drug Resistance, Microbial/genetics , China , Environmental Monitoring , Anti-Bacterial Agents/pharmacology , Genes, Bacterial , Seasons
4.
Polymers (Basel) ; 16(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38543460

ABSTRACT

In this work, electrospun polylactide fibers with new photostabilizing additives, 4-methyl-2,6-diisobornylphenol (DIBP) and N-isocamphylaniline (NICA), have been tested under the influence of UV-C radiation (254 nm). The changes in the polymers' chemical structure under UV-C radiation were revealed through the increase in absorption in the 3600-3100 cm-1 region in regard to the FTIR spectra. In the samples that were irradiated for 1 h, the stabilizing effect of the photoprotectors became most noticeable as the difference in the content of the hydroxyl groups in stabilized and the pure PLA reached a maximum. The TG-DSC method revealed that the most sensitive indicator of the irradiation effect was the glass transition temperature (Tg), which persisted after 2 h of irradiation when using photostabilizers and their combinations. The PLA/DIBP(1) and PLA/NICA(1) samples showed the best results in protecting PLA from UV-C radiation based on the Tg values; although, the mixture of DIBP and NICA was not as effective. The chemical structure of the photostabilized PLA samples was studied using NMR, GPC, and Py-GC/MS analysis. The electrospun polylactide fibers were mechanically tested and the effects of the electrospun samples on cell viability were studied.

5.
Mar Pollut Bull ; 199: 115951, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38150976

ABSTRACT

Due to the degradation-resistant and strong toxicity, heavy metals pose a serious threat to the safety of water environment and aquatic ecology. Rapid acquisition and prediction of heavy metal concentrations are of paramount importance for water resource management and environmental preservation. In this study, heavy metal concentrations (Cr, Ni, Cu, Pb, Zn, Cd) and physicochemical parameters of water quality including Temperature (Temp), pH, Oxygen redox potential (ORP), Dissolved oxygen (DO), Electrical conductivity (EC), Electrical resistivity (RES), Total dissolved solids (TDS), Salinity (SAL), Cyanobacteria (BGA-PE), and turbidity (NTU) were measured at seven stations in the Yangtze river estuary. Principal Component Analysis (PCA) and Spearman correlation analysis were employed to analyze the main factors and sources of heavy metals. Results of PCA revealed that the main sources of Cr, Ni, Zn, and Cd were steel industry wastewater, domestic and industrial sewage, whereas shipping and vessel emissions were typically considered sources of Pb and Cu. Spearman correlation analysis identified Temp, pH, ORP, EC, RES, TDS, and SAL as the key physicochemical parameters of water quality, exhibiting the strongest correlation with heavy metal concentrations in sediment and water samples. Based on these results, multiple linear regression as well as non-linear models (SVM and RF) were constructed for predicting heavy metal concentrations. The results showed that the results of the nonlinear model were more suitable for predicting the concentrations of most heavy metals than the linear model, with average R values of the SVM test set and RF test set being 0.83 and 0.90. The RF model showed better applicability for simulating the concentration of heavy metals along the Yangtze river estuary. It was demonstrated that non-linear research methods provided efficient and accurate predictions of heavy metal concentrations in a simple and rapid manner, thereby offering decision-making support for watershed managers.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Water Quality , Estuaries , Environmental Monitoring/methods , Rivers , Cadmium/analysis , Lead/analysis , Water Pollutants, Chemical/analysis , Metals, Heavy/analysis , Oxygen/analysis , China , Geologic Sediments , Risk Assessment
6.
Int J Mol Sci ; 24(23)2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38069031

ABSTRACT

1,5-Diaryl-3-Oxo-1,4-Pentadiene derivatives are intriguing organic compounds with a unique structure featuring a pentadiene core, aryl groups, and a ketone group. This study investigates the influence of fluorine atoms on the conformational features of these derivatives in deuterated chloroform (CDCl3) solution. Through nuclear magnetic resonance (NMR) spectroscopy and quantum chemical calculations, we discerned variations in interatomic distances and established predominant conformer proportions. The findings suggest that the non-fluorinated entity exhibits a uniform distribution across various conformer groups. The introduction of a fluorine atom induces substantial alterations, resulting in the predominance of a specific conformer group. This structural insight may hold the key to their diverse anticancer activities, previously reported in the literature.


Subject(s)
Alkadienes , Fluorine , Fluorine/chemistry , Molecular Conformation , Magnetic Resonance Spectroscopy/methods
7.
Environ Sci Pollut Res Int ; 30(56): 118567-118587, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37917269

ABSTRACT

Antibiotics have attracted global attention due to the ecological risks to environment. In this paper, solid-phase extraction and ultra-performance liquid chromatography triple quadrupole mass spectrometry (LC-MS/MS) were utilized to analyze the fugitive characteristics of 10 antibiotics of sulfonamides (sulfadiazine, sulfamethazine, sulfadimidine, sulfathiazole, sulfapyridine, sulfamethoxazole) and tetracyclines (tetracycline, oxytetracycline, chlortetracycline and doxycycline) in the coastal waters and surfece sediments of the Yangtze River Estuary and the ecological risks of antibiotics in water were estimated using ecological risk assessment method. The results have showed that 7 of the 10 antibiotics were detected in the water, with total concentrations ranging from 0.652 to 434.47 ng/L. 8 antibiotics were detected in the sediment, with total concentrations ranging from 0.091 to 499.23 ng/g. The main antibiotic species detected in the sediment and water varied seasonally. Higher concentrations in spatially distributed areas where rivers meet and where human activities have a more significant impact. The ecological risks were found to be higher in spring and autumn than those in winter and summer. Spatial variation in individual microbial communities was not evident in the sediments. The relationship between antibiotics and microorganisms in the environment was predominantly positive. Physical and chemical factors were significantly correlated for both antibiotics and microbial communities. This study can provide research ideas for other types of antibiotics and provide a basis for the prevention of antimicrobial resistance (AMR).


Subject(s)
Tetracyclines , Water Pollutants, Chemical , Humans , Tetracyclines/analysis , Rivers/chemistry , Sulfonamides/analysis , Estuaries , Chromatography, Liquid , Environmental Monitoring/methods , Tandem Mass Spectrometry , Anti-Bacterial Agents/analysis , Sulfanilamide/analysis , China , Water/analysis , Water Pollutants, Chemical/analysis
8.
Int J Mol Sci ; 24(19)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37834088

ABSTRACT

We designed 0D, 1D, and 2D supramolecular assemblies made of diaryliodonium salts (functioning as double σ-hole donors) and carboxylates (as σ-hole acceptors). The association was based on two charge-supported halogen bonds (XB), which occurred between IIII sites of the iodonium cations and the carboxylate anions. The sequential introduction of the carboxylic groups in the aryl ring of the benzoic acid added a dimension to the 0D supramolecular organization of the benzoate, which furnished 1D-chained and 2D-layered structures when terephthalate and trimesate anions, correspondingly, were applied as XB acceptors. The structure-directing XB were studied using DFT calculations under periodic boundary conditions and were followed by the one-electron-potential analysis and the Bader atoms-in-molecules topological analysis of electron density. These theoretical methods confirmed the existence of the XB and verified the philicities of the interaction partners in the designed solid-state structures.


Subject(s)
Carboxylic Acids , Halogens , Halogens/chemistry , Anions , Density Functional Theory , Benzoic Acid
9.
Phys Chem Chem Phys ; 25(39): 26623-26631, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37755936

ABSTRACT

We report the growth of Ge-doped homoepitaxial diamond films by microwave plasma CVD in GeH4-CH4-H2 gas mixtures at moderate pressures (70-100 Torr). Optical emission spectroscopy was used to monitor Ge, H, and C2 species in the plasma at different process parameters, and trends for intensities of those radicals, gas temperature, and excitation temperature, with variations of GeH4 or CH4 precursor concentrations, were investigated. The film deposited on (111)-oriented single crystal diamond substrates in a high growth rate regime revealed a strong emission of a germanium-vacancy (GeV) color center with a zero-phonon line at ≈604 nm wavelength in photoluminescence (PL) spectra, confirming the successful doping. The observed PL shift for the GeV defect is caused by stress in the films, as evidenced and quantified by Raman spectra. These results suggest that in situ doping with Ge using a GeH4 precursor is a convenient method of controlling the formation of GeV centers in epitaxial diamond films for photonic applications.

10.
J Mol Model ; 29(8): 230, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37407869

ABSTRACT

CONTEXT: Proton transfer in acid-base systems is not well understood. Some acid-base reactions do not proceed to the extent that is expected from the difference in the pKa values between the base and acid in aqueous solutions, yet some do. In that regard, we have computationally studied the process of proton transfer from the acids of varying strength (benzenesulfonic acid (BSu), methansulfonic acid (MsO), and sulfuric acid (SA)) to the amines with different numbers of propyl substituents on the nitrogen atom (propylamine (PrA), dipropylamine (DPrA), and tripropylamine (TPrA)) upon complexation. Density functional theory calculations were used to thoroughly examine the energetic and structural aspects of the molecular complexes and/or ionic pairs resulting from the acid-base interaction. The potential energy curves along the proton transfer coordinate in these acid-amine systems were analyzed. The change in free energies accompanying the molecular complexes and ionic pair formations was calculated, and the relationship between the energy values and the ΔРА parameter (difference in proton affinity of the acid anion and amine) was established. The larger ΔРА values were found to be unfavorable for the formation of ionic pairs. Using structural, energy, QTAIM, and NBO analyses, we determined that the hydrogen bonds in the molecular complexes PrA-MsO and PrA-BSu are stronger than those in their corresponding ionic pairs. The ionic pairs with the TPrA cation possess the strongest hydrogen bonds of all the ionic pairs being studied, regardless of the anion. The results showed that hydrogen bonding interactions in the molecular complexes contribute significantly to the energies of the acid-base interaction, while in the ionic pairs, the most important energy contribution comes from Coulomb interactions, followed by hydrogen bonding and dispersion forces. The ionic pairs with propylammonium, dipropylammonium, and tripropylammonium cations have stronger ion-ion interactions than tetrapropylammonium (TetPrA)-containing ionic pairs with the same anions. This effect rises with the order of the cation: TetPrA → TPrA → DPrA → PrA, and the sequence of anions is SA → BSu → MsO. The results obtained here expand the concept of acid-base interaction and provide an alternative to experimental searches for suitable acids and bases to obtain new types of protic ionic liquids. METHODS: All quantum-chemical calculations were carried out by using the DFT/B3LYP-GD3/6-31++G(d,p) level as implemented in the Gaussian 09 software package. For the resulting structures, the electron density distribution was analyzed by the "atoms in molecules" (QTAIM) and the natural bond orbital (NBO) methods on the wave functions obtained at the same level of theory by AIMAll Version 10.05.04 and Gaussian NBO Version 3.1 programs, respectively.

12.
Polymers (Basel) ; 15(9)2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37177288

ABSTRACT

This article is devoted to the development of new photostabilizers for polylactide (PLA), a polymer that is an environmentally friendly alternative to polymers and is based on fossil raw materials. We have elucidated the role of the reaction center of two potential PLA photoprotectors: N-isobornylaniline and 2-isobornylphenol, in reactions occurring in a polymer matrix under the action of UV-C radiation. PLA samples with the photostabilizers were irradiated under a wavelength of 253.7 nm for 4, 8 and 12 h. The effectiveness of the photostabilizers was evaluated based on FTIR spectrometric data, 1H and 13C NMR, scanning electron microscopy and simultaneous thermal analysis (TG-DSC). Both stabilizers led to the protection of ester bonds between monomer units of PLA. However, 2-isobornylphenol proved to be more effective at a concentration of 0.05 wt.%, while the optimal concentration of N-isobornylaniline was 0.5 wt.% by weight. TG-DSC showed that the addition of N-isobornylaniline led to an increase in PLA resistance to thermal decomposition; the temperature of the onset of weight loss increased by 2.8 °C at 0.05 wt.% and by 8.1 °C at 0.5 wt.% of N-isobornylaniline. The photoprotector 2-isobornylphenol, on the contrary, reduced the thermal stability of PLA.

13.
Ecotoxicol Environ Saf ; 259: 115025, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37216861

ABSTRACT

In this paper, water and sediments were sampled at eight monitoring stations in the coastal areas of the Yangtze River Estuary in summer and autumn 2021. Two sulfonamide resistance genes (sul1 and sul2), six tetracycline resistance genes (tetM, tetC, tetX, tetA, tetO, and tetQ), one integrase gene (intI1), 16 S rRNA genes, and microbial communities were examined and analyzed. Most resistance genes showed relatively higher abundance in summer and lower abundance in autumn. One-way analysis of variance (ANOVA) showed significant seasonal variation of some ARGs (7 ARGs in water and 6 ARGs in sediment). River runoff and WWTPs are proven to be the major sources of resistance genes along the Yangtze River Estuary. Significant and positive correlations between intI1 and other ARGs were found in water samples (P < 0.05), implying that intI1 may influence the spread and propagation of resistance genes in aquatic environments. Proteobacteria was the dominant phylum along the Yangtze River Estuary, with an average proportion of 41.7%. Redundancy analysis indicated that the ARGs were greatly affected by temperature, dissolved oxygen, and pH in estuarine environments. Network analysis showed that Proteobacteria and Cyanobacteria were the potential host phyla for ARGs in the coastal areas of the Yangtze River Estuary.


Subject(s)
Estuaries , Microbiota , Tetracycline Resistance/genetics , Rivers/microbiology , Genes, Bacterial , Drug Resistance, Microbial/genetics , Anti-Bacterial Agents/analysis , Tetracycline/analysis , Sulfanilamide , Sulfonamides/analysis , Water/analysis , Microbiota/genetics , China , Environmental Monitoring
14.
Nat Commun ; 13(1): 4974, 2022 08 25.
Article in English | MEDLINE | ID: mdl-36008420

ABSTRACT

The quality of lake ice is of uppermost importance for ice safety and under-ice ecology, but its temporal and spatial variability is largely unknown. Here we conducted a coordinated lake ice quality sampling campaign across the Northern Hemisphere during one of the warmest winters since 1880 and show that lake ice during 2020/2021 commonly consisted of unstable white ice, at times contributing up to 100% to the total ice thickness. We observed that white ice increased over the winter season, becoming thickest and constituting the largest proportion of the ice layer towards the end of the ice cover season when fatal winter drownings occur most often and light limits the growth and reproduction of primary producers. We attribute the dominance of white ice before ice-off to air temperatures varying around the freezing point, a condition which occurs more frequently during warmer winters. Thus, under continued global warming, the prevalence of white ice is likely to substantially increase during the critical period before ice-off, for which we adjusted commonly used equations for human ice safety and light transmittance through ice.


Subject(s)
Ice , Lakes , Global Warming , Humans , Ice Cover , Seasons , Temperature
15.
Environ Res ; 213: 113674, 2022 10.
Article in English | MEDLINE | ID: mdl-35700768

ABSTRACT

Pseudomonas sp. C27 can achieve the conversion of toxic sulfide to economical elemental sulfur (S0) with various electron acceptors. In this study the distribution pattern of S0 produced by C27 in denitrifying sulfide removal (DSR) process was explored. The SEM observation identified that the particle size of the biogenic S0 was at micron level. Strikingly, a novel distribution pattern of S0 was revealed that the produced S0 was not directly secreted extracellularly, but be stored temporarily in the cell interior. Pyrolysis at 65 °C for 20 min were recommended prior to S0 recovery, which could maximize the separation of extracellular polymeric substances (EPS) from C27. Furthermore, the effects of N/S molar ratio, initial sulfide concentration, and micro-oxygen condition were investigated to improve the production of S0 by C27. The highest S0 production was obtained at S/N of 3 and anaerobic condition seemed to favor the S0 production by C27. This study would provide a theoretical support for highly efficient sulfide removal as well as S0 recovery in sulfide-laden wastewater treatment.


Subject(s)
Pseudomonas , Water Purification , Bioreactors , Denitrification , Nitrates , Sulfides , Sulfur
16.
Chemphyschem ; 23(4): e202100772, 2022 02 16.
Article in English | MEDLINE | ID: mdl-34904777

ABSTRACT

We focus on a series of protic ionic liquids (PILs) with imidazolium and alkylimidazolium (1R3HIm, R=methyl, ethyl, propyl, and butyl) cations. Using the literature data and our experimental results on the thermal and transport properties, we analyze the effects of the anion nature and the alkyl radical length in the cation structure on the above properties. DFT calculations in gas and solvent phase provide further microscopic insights into the structure and cation-anion binding in these PILs. We show that the higher thermodynamic stability of an ion pair raises the PIL decomposition temperature. The melting points of the salts with the same cation decrease as the hydrocarbon radical in the cation becomes longer, which correlates with the weaker ion-ion interaction inthe ion pairs. A comparative analysis of the protic ILs and corresponding ILs (1R3MeIm) with the same radical (R) in the cation structure and the same anion has been performed. The lower melting points of the ILs with 1R3MeIm cations are assumed to result from the weakening of both the ion-ion interaction and the hydrogen bond.


Subject(s)
Ionic Liquids , Anions , Cations/chemistry , Hydrogen Bonding , Ionic Liquids/chemistry , Solvents/chemistry
17.
J Phys Chem A ; 124(16): 3170-3179, 2020 Apr 23.
Article in English | MEDLINE | ID: mdl-32243166

ABSTRACT

Density function theory calculations are employed to study the interaction of amines bearing different numbers of alkyl substituents of different sizes on the nitrogen atom with sulfuric and methanesulfonic acids. The proton affinities of the studied amines are calculated, and it is shown that the higher the value is, the more probable is its protonation. The most stable structures of the ion pairs resulting from the acid-base interaction are obtained and characterized. The geometric parameters of the ion pairs and the characteristics derived from the NBO and QTAIM analysis show that there are hydrogen bonding interactions between the cation and the anion. The hydrogen bonding character of the ion pairs and the strength of the interaction between the ions strongly depend on the nature of the cation itself. The interaction between the ions in the ion pairs weakens with the increase in the cation size. The trend of change in the structural parameters of the H-bonds and energetic characteristics in the cation series for the studied ion pairs is not dependent on the nature of the anion.

18.
J Phys Chem A ; 123(17): 3735-3742, 2019 May 02.
Article in English | MEDLINE | ID: mdl-30950617

ABSTRACT

The results of electronic structure calculations based on density functional theory (DFT) for protic ionic liquids (PILs) consisting of triethanolammonium cation paired with anion of different sulfonic acids are reported. The influence of the anion nature on the structure and interactions in the ion pairs that are formed in these PILs is discussed in detail. Multiple H-bonding interactions exist between the protons in the NH/OH groups of the cation and different oxygen atoms of the acid anion in the ion pairs. The quantum theory of "atoms in molecules" has been used to estimate the individual contributions of each hydrogen bond to the stability of the ion pair. The hydrogen-bonding interactions in the ion pairs vary in their strength ranging from weak to moderately strong. In addition to these hydrogen bonds, there are other dispersion and electrostatic-dominant interactions that play an important role in the overall stability of PILs and their physicochemical properties. Aided by results from our previous DFT studies of triethanolammonium class of PILs with inorganic anions, these new data allow us to gain an improved understanding of the structure-property relationships in the studied ionic liquids. Close to linear correlation, in particular, has been found between the melting points and the binding energies of the cation and anion in the ion pairs.

19.
Invert Neurosci ; 19(1): 4, 2019 02 08.
Article in English | MEDLINE | ID: mdl-30734144

ABSTRACT

Primary mechanism of action of local anesthetics and various anticonvulsants is the voltage-gated sodium channel block. Many of these small molecules also have other targets in nervous system of vertebrates. However, little is known about their action on invertebrate nervous system. Nevertheless, insect-based models are suggested for high-throughput screening of antiepileptic drugs. In the present work, we characterized action of lidocaine, carbamazepine, lamotrigine, and phenytoin on the neuromuscular transition of Calliphora vicina fly larvae using conventional voltage-clamp approach. Carbamazepine and lidocaine caused inhibition of synaptic transmission, which has presynaptic origin. This action is in agreement with inhibition of voltage-gated sodium channels that reduces depolarization of nerve terminals and, thus, calcium entry. Surprisingly, phenytoin and lamotrigine produced a prominent increase in the evoked postsynaptic currents without any effect on frequency or amplitude of spontaneous miniature currents. Potassium channel blocker 4-aminopyridine affects synaptic transmission in similar way. Elevation of synaptic quantal content via increase in calcium concentration or via application of 1 mM 4-aminopyridine eliminates the enhancement effect or even turns it to modest inhibition. We propose that lamotrigine and phenytoin act as inhibitors of insect potassium channels that cause the membrane depolarization and thus facilitates calcium entry into the nerve terminal.


Subject(s)
Carbamazepine/pharmacology , Lamotrigine/pharmacology , Lidocaine/pharmacology , Phenytoin/pharmacology , Synaptic Transmission/drug effects , Voltage-Gated Sodium Channel Blockers/pharmacology , Anesthetics, Local , Animals , Anticonvulsants/pharmacology , Diptera
20.
Microsc Microanal ; 25(2): 462-469, 2019 04.
Article in English | MEDLINE | ID: mdl-30698118

ABSTRACT

Small additions of boron can remarkably improve the long-term creep resistance of 9-12% Cr steels. The improvement has been attributed to boron segregation to grain boundaries during quenching, and subsequent boron incorporation into certain families of precipitates during tempering. However, the detailed mechanisms are not yet fully understood. Atom probe tomography (APT) is an excellent technique for gaining insights into boron distribution, however, in order to acquire accurate analysis of boron in 9-12% Cr steels using APT, there are several key challenges. In order to better understand and address these challenges, we developed a novel method for site-specific APT specimen preparation, which enables convenient preparation of specimens containing specifically selected grain boundaries positioned approximately perpendicular to the axis of the APT tip. Additionally, when analyzing boron at boundaries and in carbides (as diluted solute) and borides, a widening of the profile of boron distribution compared to other elements was repeatedly observed. This phenomenon is particularly analyzed and discussed in light of the evaporation field of different elements. Finally, the possible effects of detector dead-time on quantitative analysis of boron in metal borides are discussed. A simple method using 10B correction was used to obtain good quantification.

SELECTION OF CITATIONS
SEARCH DETAIL
...