Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Astrobiology ; 17(6-7): 585-594, 2017.
Article in English | MEDLINE | ID: mdl-28731818

ABSTRACT

This overview presents the physical principles, design, measurement capabilities, and summary of planned operations of the autonomous detector of radiation of neutrons onboard rover at Mars (ADRON-RM) on the surface of Mars. ADRON-RM is a Russian project selected for the joint European Space Agency-Roscosmos ExoMars 2020 landing mission. A compact passive neutron spectrometer, ADRON-RM, was designed to study the abundance and distribution of water and neutron absorption elements (such as Cl, Fe, and others) in the martian subsurface along the path of the ExoMars rover. Key Words: Mars exploration-Surface-Neutron Spectroscopy-Water. Astrobiology 17, 585-594.

2.
Rev Sci Instrum ; 87(8): 085112, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27587165

ABSTRACT

The recent availability of large volume cerium bromide crystals raises the possibility of substantially improving gamma-ray spectrometer limiting flux sensitivities over current systems based on the lanthanum tri-halides, e.g., lanthanum bromide and lanthanum chloride, especially for remote sensing, low-level counting applications or any type of measurement characterized by poor signal to noise ratios. The Russian Space Research Institute has developed and manufactured a highly sensitive gamma-ray spectrometer for remote sensing observations of the planet Mercury from the Mercury Polar Orbiter (MPO), which forms part of ESA's BepiColombo mission. The Flight Model (FM) gamma-ray spectrometer is based on a 3-in. single crystal of LaBr3(Ce(3+)) produced in a separate crystal development programme specifically for this mission. During the spectrometers development, manufacturing, and qualification phases, large crystals of CeBr3 became available in a subsequent phase of the same crystal development programme. Consequently, the Flight Spare Model (FSM) gamma-ray spectrometer was retrofitted with a 3-in. CeBr3 crystal and qualified for space. Except for the crystals, the two systems are essentially identical. In this paper, we report on a comparative assessment of the two systems, in terms of their respective spectral properties, as well as their suitability for use in planetary mission with respect to radiation tolerance and their propensity for activation. We also contrast their performance with a Ge detector representative of that flown on MESSENGER and show that: (a) both LaBr3(Ce(3+)) and CeBr3 provide superior detection systems over HPGe in the context of minimally resourced spacecraft and (b) CeBr3 is a more attractive system than LaBr3(Ce(3+)) in terms of sensitivities at lower gamma fluxes. Based on the tests, the FM has now been replaced by the FSM on the BepiColombo spacecraft. Thus, CeBr3 now forms the central gamma-ray detection element on the MPO spacecraft.

SELECTION OF CITATIONS
SEARCH DETAIL
...