Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(18)2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37762425

ABSTRACT

Numerous studies have demonstrated that people with type 2 diabetes mellitus (associated with IAPP peptide aggregation) show an increased incidence of Alzheimer's disease (associated with Aß aggregation), but the mechanism responsible for this correlation is presently unknown. Here, we applied a yeast-based model to study the interactions of IAPP with PrP (associated with TSEs) and with the Aß42 peptide. We demonstrated that fluorescently tagged IAPP forms detergent-resistant aggregates in yeast cells. Using the FRET approach, we showed that IAPP and Aß aggregates co-localize and physically interact in yeast cells. We also showed that this interaction is specific and that there is no interaction between IAPP and PrP in the yeast system. Our data confirmed a direct physical interaction between IAPP and Aß42 aggregates in a living cell. Based on these findings, we hypothesize that this interaction may play a crucial role in seeding Aß42 aggregation in T2DM patients, thereby promoting the development of AD.


Subject(s)
Alzheimer Disease , Diabetes Mellitus, Type 2 , Humans , Amyloid beta-Peptides , Saccharomyces cerevisiae , Islet Amyloid Polypeptide
2.
Life (Basel) ; 10(9)2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32825636

ABSTRACT

Amyloids are highly ordered fibrous cross-ß protein aggregates that are notorious primarily because of association with a variety of incurable human and animal diseases (termed amyloidoses), including Alzheimer's disease (AD), Parkinson's disease (PD), type 2 diabetes (T2D), and prion diseases. Some amyloid-associated diseases, in particular T2D and AD, are widespread and affect hundreds of millions of people all over the world. However, recently it has become evident that many amyloids, termed "functional amyloids," are involved in various activities that are beneficial to organisms. Functional amyloids were discovered in diverse taxa, ranging from bacteria to mammals. These amyloids are involved in vital biological functions such as long-term memory, storage of peptide hormones and scaffolding melanin polymerization in animals, substrate attachment, and biofilm formation in bacteria and fungi, etc. Thus, amyloids undoubtedly are playing important roles in biological and pathological processes. This review is focused on functional amyloids in mammals and summarizes approaches used for identifying new potentially amyloidogenic proteins and domains.

3.
Int J Mol Sci ; 20(24)2019 Dec 07.
Article in English | MEDLINE | ID: mdl-31817906

ABSTRACT

Preeclampsia (PE) is a multisystem heterogeneous complication of pregnancy remaining a leading cause of maternal and perinatal morbidity and mortality over the world. PE has a large spectrum of clinical features and symptoms, which make diagnosis challenging. Despite a long period of studying, PE etiology is still unclear and there are no reliable rapid tests for early diagnosis of this disease. During the last decade, it was shown that proteins misfolding and aggregation are associated with PE. Several proteins, including amyloid beta peptide, transthyretin, alpha-1 antitrypsin, albumin, IgG k-free light chains, and ceruloplasmin are dysregulated in PE, resulting in toxic deposition of amyloid-like aggregates in the placenta and body fluids. It is also possible that aggregated proteins induce defective trophoblast invasion, placental ischemia, ER stress, and promote PE manifestation. The fact that protein aggregation is an emerging biomarker of PE provides an opportunity to develop new diagnostic approaches based on amyloids special features, such as Congo red (CR) staining and thioflavin T (ThT) enhanced fluorescence.


Subject(s)
Amyloid/chemistry , Biomarkers/analysis , Placenta/pathology , Pre-Eclampsia/diagnosis , Protein Aggregation, Pathological , Protein Folding , Benzothiazoles/chemistry , Female , Humans , Placenta/metabolism , Pre-Eclampsia/metabolism , Prealbumin/chemistry , Pregnancy
4.
Article in English | MEDLINE | ID: mdl-31686134

ABSTRACT

Here, we describe the longevity and locomotor behavior of senescent Drosophila males with altered expression of Dgp-1 gene. In comparison with the wild-type Canton-S (CS) males, six characteristics of the phenotype of Dgp-1[843k] mutant were found: (1) low expression of isoform A; (2) augmented expression of isoform B; (3) reduction in the mean lifespan; (4) decrease in the running speed in 3-day-old flies; (5) maintenance of a high run frequency in senescent flies; and (6) resistance to heat stress manifested as maintenance of a high run frequency at 29 °C. After cessation of "cantonization" process, mean lifespan of the mutant males drifted from low to high values finally exceeding that for CS. In contrast, behavioral phenotype of the mutant was robust. Using the GAL4/UAS system, we showed that neurospecific overexpression of isoform B resulted in a slight decrease of longevity and a high level of run frequency in the senescent flies, similar to that in Dgp-1[843K] mutant. In addition, a decreased level of reactive oxygen species was found in Dgp-1[843K] mutant males maintained under stress conditions. The elevated resistance to oxidative stress probably explains the two distinctive features of the mutation: resistance to aging processes and thermal stress displayed at behavioral level.


Subject(s)
Aging/physiology , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , GTP-Binding Proteins/metabolism , Heat-Shock Response/physiology , Locomotion/physiology , Animals , Male , Protein Isoforms/metabolism
5.
J Neurogenet ; 32(1): 15-26, 2018 03.
Article in English | MEDLINE | ID: mdl-29191114

ABSTRACT

To study the central pattern generators functioning, previously we identified genes, whose neurospecific knockdowns led to deviations in the courtship song of Drosophila melanogaster males. Reduced expression of the gene CG15630 caused a decrease in the interpulse interval. To investigate the role of CG15630, which we have called here fipi (factor of interpulse interval), in the courtship song production, at first, we have characterized fipi transcripts and protein (FIPI) in the mutant flies carrying P insertion and deletions in this gene and in flies with its RNAi knockdown. FIPI is homologous to the mammalian NCAM2 protein, an important factor of neuronal development in the olfactory system. In this study, we have revealed that local fipi knockdown in the antennal olfactory sensory neurons (OR67d and IR84a), which are responsible for reception of chemosignals modulating courtship behavior, alters the interpulse interval in the opposite directions. Thus, a proper fipi expression seems to be necessary for perception of sexual chemosignals, and the effect of fipi knockdown on IPI value depends on the type of chemoreceptor neurons affected.


Subject(s)
Drosophila Proteins/physiology , Drosophila melanogaster/physiology , Neural Cell Adhesion Molecule L1/physiology , Sexual Behavior, Animal/physiology , Animals , Central Pattern Generators/physiology , Male
6.
Fly (Austin) ; 8(3): 176-87, 2014.
Article in English | MEDLINE | ID: mdl-25494872

ABSTRACT

Molecular mechanisms underlying the functioning of central pattern generators (CPGs) are poorly understood. Investigations using genetic approaches in the model organism Drosophila may help to identify unknown molecular players participating in the formation or control of motor patterns. Here we report Drosophila genes as candidates for involvement in the neural mechanisms responsible for motor functions, such as locomotion and courtship song. Twenty-two Drosophila lines, used for gene identification, were isolated from a previously created collection of 1064 lines, each carrying a P element insertion in one of the autosomes. The lines displayed extreme deviations in locomotor and/or courtship song parameters compared with the whole collection. The behavioral consequences of CNS-specific RNAi-mediated knockdowns for 10 identified genes were estimated. The most prominent changes in the courtship song interpulse interval (IPI) were seen in flies with Sps2 or CG15630 knockdown. Glia-specific knockdown of these genes produced no effect on the IPI. Estrogen-induced knockdown of CG15630 in adults reduced the IPI. The product of the CNS-specific gene, CG15630 (a predicted cell surface receptor), is likely to be directly involved in the functioning of the CPG generating the pulse song pattern. Future studies should ascertain its functional role in the neurons that constitute the song CPG. Other genes (Sps2, CG34460), whose CNS-specific knockdown resulted in IPI reduction, are also worthy of detailed examination.


Subject(s)
Drosophila melanogaster/genetics , Locomotion/genetics , Sexual Behavior, Animal/physiology , Animal Communication , Animals , Central Nervous System/physiology , Courtship , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Estrogens , Female , Gene Knockdown Techniques , Male , Mutation , Myogenic Regulatory Factors/metabolism , Phenotype , Phosphotransferases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...