Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanobiotechnology ; 22(1): 223, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702815

ABSTRACT

Cardiac muscle targeting is a notoriously difficult task. Although various nanoparticle (NP) and adeno-associated viral (AAV) strategies with heart tissue tropism have been developed, their performance remains suboptimal. Significant off-target accumulation of i.v.-delivered pharmacotherapies has thwarted development of disease-modifying cardiac treatments, such as gene transfer and gene editing, that may address both rare and highly prevalent cardiomyopathies and their complications. Here, we present an intriguing discovery: cargo-less, safe poly (lactic-co-glycolic acid) particles that drastically improve heart delivery of AAVs and NPs. Our lead formulation is referred to as ePL (enhancer polymer). We show that ePL increases selectivity of AAVs and virus-like NPs (VLNPs) to the heart and de-targets them from the liver. Serotypes known to have high (AAVrh.74) and low (AAV1) heart tissue tropisms were tested with and without ePL. We demonstrate up to an order of magnitude increase in heart-to-liver accumulation ratios in ePL-injected mice. We also show that ePL exhibits AAV/NP-independent mechanisms of action, increasing glucose uptake in the heart, increasing cardiac protein glycosylation, reducing AAV neutralizing antibodies, and delaying blood clearance of AAV/NPs. Current approaches utilizing AAVs or NPs are fraught with challenges related to the low transduction of cardiomyocytes and life-threatening immune responses; our study introduces an exciting possibility to direct these modalities to the heart at reduced i.v. doses and, thus, has an unprecedented impact on drug delivery and gene therapy. Based on our current data, the ePL system is potentially compatible with any therapeutic modality, opening a possibility of cardiac targeting with numerous pharmacological approaches.


Subject(s)
Dependovirus , Genetic Vectors , Myocardium , Nanoparticles , Polylactic Acid-Polyglycolic Acid Copolymer , Dependovirus/genetics , Animals , Nanoparticles/chemistry , Mice , Myocardium/metabolism , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Humans , Mice, Inbred C57BL , Heart , Genetic Therapy/methods , Gene Transfer Techniques , Liver/metabolism , Viral Tropism , HEK293 Cells
2.
ACS Omega ; 5(36): 23289-23298, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32954180

ABSTRACT

Here, we report a nanoparticle-based probe that affords facile cell labeling with cholesterol in cholesterol efflux (CE) assays. This probe, called ezFlux, was optimized through a screening of multiple nanoformulations engineered with a Förster resonance energy transfer (FRET) reporter. The physicochemical- and bio-similarity of ezFlux to standard semi-synthetic acetylated low-density lipoprotein (acLDL) was confirmed by testing uptake in macrophages, the intracellular route of degradation, and performance in CE assays. A single-step fast self-assembly fabrication makes ezFlux an attractive alternative to acLDL. We also show that CE testing using ezFlux is significantly cheaper than that performed using commercial kits or acLDL. Additionally, we analyze clinical trials that measure CE and show that ezFlux has a place in many research and clinical laboratories worldwide that use CE to assess cellular and lipoprotein function.

3.
J Biol Chem ; 289(10): 6740-6750, 2014 Mar 07.
Article in English | MEDLINE | ID: mdl-24398678

ABSTRACT

Ribosomes are large and highly charged macromolecular complexes consisting of RNA and proteins. Here, we address the electrostatic and nonpolar properties of ribosomal proteins that are important for ribosome assembly and interaction with other cellular components and may influence protein folding on the ribosome. We examined 50 S ribosomal subunits from 10 species and found a clear distinction between the net charge of ribosomal proteins from halophilic and non-halophilic organisms. We found that ∼67% ribosomal proteins from halophiles are negatively charged, whereas only up to ∼15% of ribosomal proteins from non-halophiles share this property. Conversely, hydrophobicity tends to be lower for ribosomal proteins from halophiles than for the corresponding proteins from non-halophiles. Importantly, the surface electrostatic potential of ribosomal proteins from all organisms, especially halophiles, has distinct positive and negative regions across all the examined species. Positively and negatively charged residues of ribosomal proteins tend to be clustered in buried and solvent-exposed regions, respectively. Hence, the majority of ribosomal proteins is characterized by a significant degree of intramolecular charge segregation, regardless of the organism of origin. This key property enables the ribosome to accommodate proteins within its complex scaffold regardless of their overall net charge.


Subject(s)
Ribosomal Proteins/chemistry , Ribosome Subunits, Large, Archaeal/chemistry , Ribosome Subunits, Large, Bacterial/chemistry , Ribosome Subunits, Large, Eukaryotic/chemistry , Archaea/metabolism , Bacteria/metabolism , Hydrophobic and Hydrophilic Interactions , Saccharomyces cerevisiae/metabolism , Static Electricity , Tetrahymena thermophila/metabolism
4.
Annu Rev Biophys ; 40: 337-59, 2011.
Article in English | MEDLINE | ID: mdl-21370971

ABSTRACT

Over five decades of research have yielded a large body of information on how purified proteins attain their native state when refolded in the test tube, starting from a chemically or thermally denatured state. Nevertheless, we still know little about how proteins fold and unfold in their natural biological habitat: the living cell. Indeed, a variety of cellular components, including molecular chaperones, the ribosome, and crowding of the intracellular medium, modulate folding mechanisms in physiologically relevant environments. This review focuses on the current state of knowledge in protein folding in the cell with emphasis on the early stage of a protein's life, as the nascent polypeptide traverses and emerges from the ribosomal tunnel. Given the vectorial nature of ribosome-assisted translation, the transient degree of chain elongation becomes a relevant variable expected to affect nascent protein foldability, aggregation propensity and extent of interaction with chaperones and the ribosome.


Subject(s)
Models, Chemical , Models, Molecular , Protein Folding , Proteins/chemistry , Proteins/ultrastructure , Computer Simulation , Protein Conformation
5.
Biophys J ; 99(5): L37-9, 2010 Sep 08.
Article in English | MEDLINE | ID: mdl-20816043

ABSTRACT

This work explores the effect of long-range tertiary contacts on the distribution of residual secondary structure in the unfolded state of an alpha-helical protein. N-terminal fragments of increasing length, in conjunction with multidimensional nuclear magnetic resonance, were employed. A protein representative of the ubiquitous globin fold was chosen as the model system. We found that, while most of the detectable alpha-helical population in the unfolded ensemble does not depend on the presence of the C-terminal region (corresponding to the native G and H helices), specific N-to-C long-range contacts between the H and A-B-C regions enhance the helical secondary structure content of the N terminus (A-B-C regions). The simple approach introduced here, based on the evaluation of N-terminal polypeptide fragments of increasing length, is of general applicability to identify the influence of long-range interactions in unfolded proteins.


Subject(s)
Globins/chemistry , Globins/metabolism , Protein Unfolding , Animals , Apoproteins/chemistry , Apoproteins/metabolism , Myoglobin/chemistry , Myoglobin/metabolism , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Structure, Secondary
SELECTION OF CITATIONS
SEARCH DETAIL
...