Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
JCI Insight ; 9(9)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38564291

ABSTRACT

Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease associated with cardiomyopathy. DMD cardiomyopathy is characterized by abnormal intracellular Ca2+ homeostasis and mitochondrial dysfunction. We used dystrophin and utrophin double-knockout (mdx:utrn-/-) mice in a sarcolipin (SLN) heterozygous-knockout (sln+/-) background to examine the effect of SLN reduction on mitochondrial function in the dystrophic myocardium. Germline reduction of SLN expression in mdx:utrn-/- mice improved cardiac sarco/endoplasmic reticulum (SR) Ca2+ cycling, reduced cardiac fibrosis, and improved cardiac function. At the cellular level, reducing SLN expression prevented mitochondrial Ca2+ overload, reduced mitochondrial membrane potential loss, and improved mitochondrial function. Transmission electron microscopy of myocardial tissues and proteomic analysis of mitochondria-associated membranes showed that reducing SLN expression improved mitochondrial structure and SR-mitochondria interactions in dystrophic cardiomyocytes. These findings indicate that SLN upregulation plays a substantial role in the pathogenesis of cardiomyopathy and that reducing SLN expression has clinical implications in the treatment of DMD cardiomyopathy.


Subject(s)
Cardiomyopathies , Dystrophin , Mice, Inbred mdx , Mice, Knockout , Muscle Proteins , Muscular Dystrophy, Duchenne , Proteolipids , Utrophin , Animals , Male , Mice , Calcium/metabolism , Cardiomyopathies/metabolism , Cardiomyopathies/genetics , Cardiomyopathies/pathology , Disease Models, Animal , Dystrophin/genetics , Dystrophin/metabolism , Mitochondria, Heart/metabolism , Mitochondria, Heart/ultrastructure , Mitochondria, Heart/genetics , Muscle Proteins/metabolism , Muscle Proteins/genetics , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Proteolipids/metabolism , Proteolipids/genetics , Utrophin/genetics , Utrophin/metabolism
2.
Nat Commun ; 14(1): 5805, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37726310

ABSTRACT

The anti-apoptotic function of Bcl-xL in the heart during ischemia/reperfusion is diminished by K-Ras-Mst1-mediated phosphorylation of Ser14, which allows dissociation of Bcl-xL from Bax and promotes cardiomyocyte death. Here we show that Ser14 phosphorylation of Bcl-xL is also promoted by hemodynamic stress in the heart, through the H-Ras-ERK pathway. Bcl-xL Ser14 phosphorylation-resistant knock-in male mice develop less cardiac hypertrophy and exhibit contractile dysfunction and increased mortality during acute pressure overload. Bcl-xL Ser14 phosphorylation enhances the Ca2+ transient by blocking the inhibitory interaction between Bcl-xL and IP3Rs, thereby promoting Ca2+ release and activation of the calcineurin-NFAT pathway, a Ca2+-dependent mechanism that promotes cardiac hypertrophy. These results suggest that phosphorylation of Bcl-xL at Ser14 in response to acute pressure overload plays an essential role in mediating compensatory hypertrophy by inducing the release of Bcl-xL from IP3Rs, alleviating the negative constraint of Bcl-xL upon the IP3R-NFAT pathway.


Subject(s)
Calcium , Myocytes, Cardiac , Animals , Male , Mice , Cardiomegaly , MAP Kinase Signaling System , Phosphorylation
3.
Basic Res Cardiol ; 118(1): 21, 2023 05 25.
Article in English | MEDLINE | ID: mdl-37227592

ABSTRACT

Iron overload associated cardiac dysfunction remains a significant clinical challenge whose underlying mechanism(s) have yet to be defined. We aim to evaluate the involvement of the mitochondrial Ca2+ uniporter (MCU) in cardiac dysfunction and determine its role in the occurrence of ferroptosis. Iron overload was established in control (MCUfl/fl) and conditional MCU knockout (MCUfl/fl-MCM) mice. LV function was reduced by chronic iron loading in MCUfl/fl mice, but not in MCUfl/fl-MCM mice. The level of mitochondrial iron and reactive oxygen species were increased and mitochondrial membrane potential and spare respiratory capacity (SRC) were reduced in MCUfl/fl cardiomyocytes, but not in MCUfl/fl-MCM cardiomyocytes. After iron loading, lipid oxidation levels were increased in MCUfl/fl, but not in MCUfl/fl-MCM hearts. Ferrostatin-1, a selective ferroptosis inhibitor, reduced lipid peroxidation and maintained LV function in vivo after chronic iron treatment in MCUfl/fl hearts. Isolated cardiomyocytes from MCUfl/fl mice demonstrated ferroptosis after acute iron treatment. Moreover, Ca2+ transient amplitude and cell contractility were both significantly reduced in isolated cardiomyocytes from chronically Fe treated MCUfl/fl hearts. However, ferroptosis was not induced in cardiomyocytes from MCUfl/fl-MCM hearts nor was there a reduction in Ca2+ transient amplitude or cardiomyocyte contractility. We conclude that mitochondrial iron uptake is dependent on MCU, which plays an essential role in causing mitochondrial dysfunction and ferroptosis under iron overload conditions in the heart. Cardiac-specific deficiency of MCU prevents the development of ferroptosis and iron overload-induced cardiac dysfunction.


Subject(s)
Heart Diseases , Iron Overload , Mice , Animals , Myocytes, Cardiac , Iron Overload/complications , Iron , Calcium
4.
Cells ; 11(17)2022 09 01.
Article in English | MEDLINE | ID: mdl-36078133

ABSTRACT

Ferroptosis has recently been demonstrated to be a novel regulated non-apoptotic cell death characterized by iron-dependence and the accumulation of lipid peroxidation that results in membrane damage. Excessive iron induces ferroptosis by promoting the generation of both soluble and lipid ROS via an iron-dependent Fenton reaction and lipoxygenase (LOX) enzyme activity. Cytosolic glutathione peroxidase 4 (cGPX4) pairing with ferroptosis suppressor protein 1 (FSP1) and mitochondrial glutathione peroxidase 4 (mGPX4) pairing with dihydroorotate dehydrogenase (DHODH) serve as two separate defense systems to detoxify lipid peroxidation in the cytoplasmic as well as the mitochondrial membrane, thereby defending against ferroptosis in cells under normal conditions. However, disruption of these defense systems may cause ferroptosis. Emerging evidence has revealed that ferroptosis plays an essential role in the development of diverse cardiovascular diseases (CVDs), such as hemochromatosis-associated cardiomyopathy, doxorubicin-induced cardiotoxicity, ischemia/reperfusion (I/R) injury, heart failure (HF), atherosclerosis, and COVID-19-related arrhythmias. Iron chelators, antioxidants, ferroptosis inhibitors, and genetic manipulations may alleviate the aforementioned CVDs by blocking ferroptosis pathways. In conclusion, ferroptosis plays a critical role in the pathogenesis of various CVDs and suppression of cardiac ferroptosis is expected to become a potential therapeutic option. Here, we provide a comprehensive review on the molecular mechanisms involved in ferroptosis and its implications in cardiovascular disease.


Subject(s)
COVID-19 , Cardiovascular Diseases , Ferroptosis , Reperfusion Injury , Humans , Iron/metabolism , Lipid Peroxidation
5.
Circ Arrhythm Electrophysiol ; 14(2): e009291, 2021 02.
Article in English | MEDLINE | ID: mdl-33417472

ABSTRACT

BACKGROUND: Arrhythmias and heart failure are common cardiac complications leading to substantial morbidity and mortality in patients with hemochromatosis, yet mechanistic insights remain incomplete. We investigated the effects of iron (Fe) on electrophysiological properties and intracellular Ca2+ (Ca2+i) handling in mouse left ventricular cardiomyocytes. METHODS: Cardiomyocytes were isolated from the left ventricle of mouse hearts and were superfused with Fe3+/8-hydroxyquinoline complex (5-100 µM). Membrane potential and ionic currents including TRPC (transient receptor potential canonical) were recorded using the patch-clamp technique. Ca2+i was evaluated by using Fluo-4. Cell contraction was measured with a video-based edge detection system. The role of TRPCs in the genesis of arrhythmias was also investigated by using a mathematical model of a mouse ventricular myocyte with the incorporation of the TRPC component. RESULTS: We observed prolongation of the action potential duration and induction of early and delayed afterdepolarizations in myocytes superfused with 15 µmol/L Fe3+/8-hydroxyquinoline complex. Iron treatment decreased the peak amplitude of the L-type Ca2+ current and total K+ current, altered Ca2+i dynamics, and decreased cell contractility. During the final phase of Fe treatment, sustained Ca2+i waves and repolarization failure occurred and ventricular cells became unexcitable. Gadolinium abolished Ca2+i waves and restored the resting membrane potential to the normal range. The involvement of TRPC activation was confirmed by TRPC channel current recordings in the absence or presence of functional TRPC channel antibodies. Computer modeling captured the same action potential and Ca2+i dynamics and provided additional mechanistic insights. CONCLUSIONS: We conclude that iron overload induces cardiac dysfunction that is associated with TRPC channel activation and alterations in membrane potential and Ca2+i dynamics.


Subject(s)
Action Potentials/physiology , Arrhythmias, Cardiac/metabolism , Calcium/metabolism , Iron Overload/metabolism , Myocytes, Cardiac/metabolism , Animals , Arrhythmias, Cardiac/pathology , Arrhythmias, Cardiac/physiopathology , Calcium Signaling , Disease Models, Animal , Electrophysiological Phenomena , Iron Overload/pathology , Iron Overload/physiopathology , Male , Mice , Mice, Inbred C57BL , Myocardial Contraction/physiology , Myocytes, Cardiac/pathology , Patch-Clamp Techniques
6.
Am J Physiol Heart Circ Physiol ; 320(1): H200-H210, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33216625

ABSTRACT

Sarcolipin (SLN) is an inhibitor of sarco/endoplasmic reticulum (SR) Ca2+-ATPase (SERCA) and expressed at high levels in the ventricles of animal models for and patients with Duchenne muscular dystrophy (DMD). The goal of this study was to determine whether the germline ablation of SLN expression improves cardiac SERCA function and intracellular Ca2+ (Ca2+i) handling and prevents cardiomyopathy in the mdx mouse model of DMD. Wild-type, mdx, SLN-haploinsufficient mdx (mdx:sln+/-), and SLN-deficient mdx (mdx:sln-/-) mice were used for this study. SERCA function and Ca2+i handling were determined by Ca2+ uptake assays and by measuring single-cell Ca2+ transients, respectively. Age-dependent disease progression was determined by histopathological examinations and by echocardiography in 6-, 12-, and 20-mo-old mice. Gene expression changes in the ventricles of mdx:sln+/- mice were determined by RNA-Seq analysis. SERCA function and Ca2+i cycling were improved in the ventricles of mdx:sln+/- mice. Fibrosis and necrosis were significantly decreased, and cardiac function was enhanced in the mdx:sln+/- mice until the study endpoint. The mdx:sln-/- mice also exhibited similar beneficial effects. RNA-Seq analysis identified distinct gene expression changes including the activation of the apelin pathway in the ventricles of mdx:sln+/- mice. Our findings suggest that reducing SLN expression is sufficient to improve cardiac SERCA function and Ca2+i cycling and prevent cardiomyopathy in mdx mice.NEW & NOTEWORTHY First, reducing sarcopolin (SLN) expression improves sarco/endoplasmic reticulum Ca2+ uptake and intracellular Ca2+ handling and prevents cardiomyopathy in mdx mice. Second, reducing SLN expression prevents diastolic dysfunction and improves cardiac contractility in mdx mice Third, reducing SLN expression activates apelin-mediated cardioprotective signaling pathways in mdx heart.


Subject(s)
Cardiomyopathies/prevention & control , Haploinsufficiency , Muscle Proteins/deficiency , Muscular Dystrophy, Duchenne/complications , Myocardium/metabolism , Proteolipids/deficiency , Animals , Apelin/genetics , Apelin/metabolism , Calcium/metabolism , Calcium Signaling , Cardiomyopathies/etiology , Cardiomyopathies/genetics , Cardiomyopathies/metabolism , Disease Models, Animal , Female , Fibrosis , Gene Expression Regulation , Male , Mice, Inbred C57BL , Mice, Inbred mdx , Mice, Knockout , Muscle Proteins/genetics , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Myocardium/pathology , Necrosis , Proteolipids/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Ventricular Function, Left
7.
Antioxidants (Basel) ; 9(8)2020 Aug 16.
Article in English | MEDLINE | ID: mdl-32824344

ABSTRACT

Iron (Fe) plays an essential role in many physiological processes. Hereditary hemochromatosis or frequent blood transfusions often cause iron overload (IO), which can lead to cardiomyopathy and arrhythmias; however, the underlying mechanism is not well defined. In the present study, we assess the hypothesis that IO promotes arrhythmias via reactive oxygen species (ROS) production, mitochondrial membrane potential (∆Ψm) depolarization, and disruption of cytosolic Ca dynamics. In ventricular myocytes isolated from wild type (WT) mice, both cytosolic and mitochondrial Fe levels were elevated following perfusion with the Fe3+/8-hydroxyquinoline (8-HQ) complex. IO promoted mitochondrial superoxide generation (measured using MitoSOX Red) and induced the depolarization of the ΔΨm (measured using tetramethylrhodamine methyl ester, TMRM) in a dose-dependent manner. IO significantly increased the rate of Ca wave (CaW) formation measured in isolated ventricular myocytes using Fluo-4. Furthermore, in ex-vivo Langendorff-perfused hearts, IO increased arrhythmia scores as evaluated by ECG recordings under programmed S1-S2 stimulation protocols. We also carried out similar experiments in cyclophilin D knockout (CypD KO) mice in which the mitochondrial permeability transition pore (mPTP) opening is impaired. While comparable cytosolic and mitochondrial Fe load, mitochondrial ROS production, and depolarization of the ∆Ψm were observed in ventricular myocytes isolated from both WT and CypD KO mice, the rate of CaW formation in isolated cells and the arrhythmia scores in ex-vivo hearts were significantly lower in CypD KO mice compared to those observed in WT mice under conditions of IO. The mPTP inhibitor cyclosporine A (CsA, 1 µM) also exhibited a protective effect. In conclusion, our results suggest that IO induces mitochondrial ROS generation and ∆Ψm depolarization, thus opening the mPTP, thereby promoting CaWs and cardiac arrhythmias. Conversely, the inhibition of mPTP ameliorates the proarrhythmic effects of IO.

8.
Am J Physiol Cell Physiol ; 317(4): C813-C824, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31365291

ABSTRACT

Reduction in the expression of sarcolipin (SLN), an inhibitor of sarco(endo)plasmic reticulum (SR) Ca2+-ATPase (SERCA), ameliorates severe muscular dystrophy in mice. However, the mechanism by which SLN inhibition improves muscle structure remains unclear. Here, we describe the previously unknown function of SLN in muscle differentiation in Duchenne muscular dystrophy (DMD). Overexpression of SLN in C2C12 resulted in decreased SERCA pump activity, reduced SR Ca2+ load, and increased intracellular Ca2+ (Cai2+) concentration. In addition, SLN overexpression resulted in altered expression of myogenic markers and poor myogenic differentiation. In dystrophin-deficient dog myoblasts and myotubes, SLN expression was significantly high and associated with defective Cai2+ cycling. The dystrophic dog myotubes were less branched and associated with decreased autophagy and increased expression of mitochondrial fusion and fission proteins. Reduction in SLN expression restored these changes and enhanced dystrophic dog myoblast fusion during differentiation. In summary, our data suggest that SLN upregulation is an intrinsic secondary change in dystrophin-deficient myoblasts and could account for the Cai2+ mishandling, which subsequently contributes to poor myogenic differentiation. Accordingly, reducing SLN expression can improve the Cai2+ cycling and differentiation of dystrophic myoblasts. These findings provide cellular-level supports for targeting SLN expression as a therapeutic strategy for DMD.


Subject(s)
Calcium/metabolism , Muscle Development/physiology , Muscle Proteins/metabolism , Muscular Dystrophy, Duchenne/metabolism , Proteolipids/metabolism , Animals , Cell Differentiation/physiology , Dogs , Dystrophin/deficiency , Mice, Knockout , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/physiopathology , Myoblasts/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
9.
Circ Res ; 124(2): 292-305, 2019 01 18.
Article in English | MEDLINE | ID: mdl-30582455

ABSTRACT

RATIONALE: The Hippo pathway plays an important role in determining organ size through regulation of cell proliferation and apoptosis. Hippo inactivation and consequent activation of YAP (Yes-associated protein), a transcription cofactor, have been proposed as a strategy to promote myocardial regeneration after myocardial infarction. However, the long-term effects of Hippo deficiency on cardiac function under stress remain unknown. OBJECTIVE: We investigated the long-term effect of Hippo deficiency on cardiac function in the presence of pressure overload (PO). METHODS AND RESULTS: We used mice with cardiac-specific homozygous knockout of WW45 (WW45cKO), in which activation of Mst1 (Mammalian sterile 20-like 1) and Lats2 (large tumor suppressor kinase 2), the upstream kinases of the Hippo pathway, is effectively suppressed because of the absence of the scaffolding protein. We used male mice at 3 to 4 month of age in all animal experiments. We subjected WW45cKO mice to transverse aortic constriction for up to 12 weeks. WW45cKO mice exhibited higher levels of nuclear YAP in cardiomyocytes during PO. Unexpectedly, the progression of cardiac dysfunction induced by PO was exacerbated in WW45cKO mice, despite decreased apoptosis and activated cardiomyocyte cell cycle reentry. WW45cKO mice exhibited cardiomyocyte sarcomere disarray and upregulation of TEAD1 (transcriptional enhancer factor) target genes involved in cardiomyocyte dedifferentiation during PO. Genetic and pharmacological inactivation of the YAP-TEAD1 pathway reduced the PO-induced cardiac dysfunction in WW45cKO mice and attenuated cardiomyocyte dedifferentiation. Furthermore, the YAP-TEAD1 pathway upregulated OSM (oncostatin M) and OSM receptors, which played an essential role in mediating cardiomyocyte dedifferentiation. OSM also upregulated YAP and TEAD1 and promoted cardiomyocyte dedifferentiation, indicating the existence of a positive feedback mechanism consisting of YAP, TEAD1, and OSM. CONCLUSIONS: Although activation of YAP promotes cardiomyocyte regeneration after cardiac injury, it induces cardiomyocyte dedifferentiation and heart failure in the long-term in the presence of PO through activation of the YAP-TEAD1-OSM positive feedback mechanism.


Subject(s)
Cell Cycle Proteins/deficiency , Cell Dedifferentiation , Heart Failure/metabolism , Myocytes, Cardiac/metabolism , Protein Serine-Threonine Kinases/metabolism , Ventricular Dysfunction, Left/metabolism , Ventricular Function, Left , Adaptor Proteins, Signal Transducing/metabolism , Animals , Apoptosis , Cell Cycle , Cell Cycle Proteins/genetics , Cells, Cultured , DNA-Binding Proteins/metabolism , Disease Models, Animal , Heart Failure/genetics , Heart Failure/pathology , Heart Failure/physiopathology , Hippo Signaling Pathway , Male , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Cardiac/pathology , Oncostatin M/metabolism , Phosphoproteins/metabolism , Rats, Wistar , Signal Transduction , TEA Domain Transcription Factors , Transcription Factors/metabolism , Ventricular Dysfunction, Left/genetics , Ventricular Dysfunction, Left/pathology , Ventricular Dysfunction, Left/physiopathology , YAP-Signaling Proteins
10.
FASEB J ; 32(8): 4229-4240, 2018 08.
Article in English | MEDLINE | ID: mdl-29490168

ABSTRACT

Hibernating animals show resistance to hypothermia-induced cardiac arrhythmias. However, it is not clear whether and how mammalian hibernators are resistant to ischemia-induced arrhythmias. The goal of this investigation was to determine the susceptibility of woodchucks ( Marmota monax) to arrhythmias and their mechanisms after coronary artery occlusion at the same room temperature in both winter, the time for hibernation, and summer, when they do not hibernate. By monitoring telemetric electrocardiograms, we found significantly higher arrhythmia scores, calculated as the severity of arrhythmias, with incidence of ventricular tachycardia, ventricular fibrillation, and thus sudden cardiac death (SCD) in woodchucks in summer than they had in winter. The level of catalase expression in woodchuck hearts was significantly higher, whereas the level of oxidized Ca2+/calmodulin-dependent protein kinase II (CaMKII) was lower in winter than it was in summer. Ventricular myocytes isolated from woodchucks in winter were more resistant to H2O2-induced early afterdepolarizations (EADs) compared with myocytes isolated from woodchucks in summer. The EADs were eliminated by inhibiting CaMKII (with KN-93), l-type Ca current (with nifedipine), or late Na+ current (with ranolazine). In woodchucks, in the summer, the arrhythmia score was significantly reduced by overexpression of catalase ( via adenoviral vectors) or the inhibition of CaMKII (with KN-93) in the heart. This study suggests that the heart of the mammalian hibernator is more resistant to ischemia-induced arrhythmias and SCD in winter. Increased antioxidative capacity and reduced CaMKII activity may confer resistance in woodchuck hearts against EADs and arrhythmias during winter. The profound protection conferred by catalase overexpression or CaMKII inhibition in this novel natural animal model may provide insights into clinical directions for therapy of arrhythmias.-Zhao, Z., Kudej, R. K., Wen, H., Fefelova, N., Yan, L., Vatner, D. E., Vatner, S. F., Xie, L.-H. Antioxidant defense and protection against cardiac arrhythmias: lessons from a mammalian hibernator (the woodchuck).


Subject(s)
Antioxidants/metabolism , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/prevention & control , Mammals/metabolism , Marmota/metabolism , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Coronary Vessels/metabolism , Disease Models, Animal , Hibernation/physiology , Hypothermia/metabolism , Seasons , Temperature
11.
Neuromuscul Disord ; 28(4): 361-372, 2018 04.
Article in English | MEDLINE | ID: mdl-29477453

ABSTRACT

Duchenne muscular dystrophy (DMD) associated cardiomyopathy remains incurable. Connexin 43 (Cx43) is upregulated and remodeled in the hearts of mdx mice, a mouse model of DMD. Hearts from Wild Type, mdx, and mdx:Cx43(+/-) mice were studied before (4-6 months) and after (10-15 months) the onset of cardiomyopathy to assess the impact of decreasing Cx43 levels on cardiac pathology in dystrophic mice. Increased connexin 43 protein levels in mdx hearts were not observed in mdx:Cx43(+/-) hearts. Cx43 remodeling in mdx hearts was attenuated in mdx:Cx43(+/-) hearts. At time-point 4-6 months, isolated cardiomyocytes from mdx hearts displayed enhanced ethidium bromide uptake, augmented intracellular calcium signals and increased production of reactive oxygen species. These pathological features were improved in mdx:Cx43(+/-) cardiomyocytes. Isoproterenol-challenged mdx:Cx43(+/-) mice did not show arrhythmias or acute lethality observed in mdx mice. Likewise, isoproterenol-challenged mdx:Cx43(+/-) isolated hearts were also protected from arrhythmogenesis. At time-point 10-15 months, mdx:Cx43(+/-) mice showed decreased cardiac fibrosis and improved ventricular function, relative to mdx mice. These results suggest that normalization of connexin 43 protein levels in mdx mice reduces overall cardiac pathology.


Subject(s)
Calcium/metabolism , Cardiomyopathies/metabolism , Connexin 43/metabolism , Muscular Dystrophy, Duchenne/metabolism , Animals , Cardiomyopathies/pathology , Disease Models, Animal , Female , Male , Mice, Transgenic , Muscular Dystrophy, Duchenne/pathology , Myocardium/pathology , Myocytes, Cardiac/pathology
12.
Front Physiol ; 9: 1785, 2018.
Article in English | MEDLINE | ID: mdl-30618800

ABSTRACT

Background and Purpose: Store-operated calcium entry (SOCE) is an important physiological phenomenon that extensively mediates intracellular calcium ion (Ca2+) load. It has been previously found in myocytes isolated from neonatal or diseased hearts. We aimed to determine its existence, molecular nature in undiseased hearts and its potential arrhythmogenic implications under hyperactive conditions. Experimental Approach: Ventricular myocytes isolated from adult FVB mice were studied by using Ca2+ imaging and whole-cell perforated patch-clamp recording. In addition, lead II ECGs were recorded in isolated Langendorff-perfused mice hearts. Functional TRPC channel antibodies and inhibitors, and TRPC6 activator hyperforin were used. Key Results: In this study, we demonstrate the existence and contribution of SOCE in normal adult mouse cardiac myocytes. For an apparent SOCE activation, complete depletion of sarcoplasmic reticulum (SR) Ca2+ by employing both caffeine (10 mM) and thapsigargin (1 µM) or cyclopiazonic acid (10 µM) was required. Consistent with the notion that SOCE may be mediated by heteromultimeric TRPC channels, SOCEs observed from those myocytes were significantly reduced by the pretreatment with anti-TRPC1, 3, and 6 antibodies as well as by gadolinium, a non-selective TRPC channel blocker. In addition, we showed that SOCE may regulate spontaneous SR Ca2+ release, Ca2+ waves, and triggered activities which may manifest cardiac arrhythmias. Since the spontaneous depolarization in membrane potential preceded the elevation of intracellular Ca2+, an inward membrane current presumably via TRPC channels was considered as the predominant cause of cellular arrhythmias. The selective TRPC6 activator hyperforin (0.1-10 µM) significantly facilitated the SOCE, SOCE-mediated inward current, and calcium load in the ventricular myocytes. ECG recording further demonstrated the proarrhythmic effects of hyperforin in ex vivo mouse hearts. Conclusion and Implications: We suggest that SOCE, which is at least partially mediated by TRPC channels, exists in adult mouse ventricular myocytes. TRPC channels and SOCE mechanism may be involved in cardiac arrhythmogenesis via promotion of spontaneous Ca2+ waves and triggered activities under hyperactivated conditions.

13.
Cell Calcium ; 60(6): 363-372, 2016 12.
Article in English | MEDLINE | ID: mdl-27616659

ABSTRACT

In the present study, we have used a genetic mouse model that lacks cyclophilin D (CypD KO) to assess the cardioprotective effect of mitochondrial permeability transition pore (mPTP) inhibition on Ca2+ waves and Ca2+ alternans at the single cell level, and cardiac arrhythmias in whole-heart preparations. The protonophore carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP) caused mitochondrial membrane potential depolarization to the same extent in cardiomyocytes from both WT and CypD KO mice, however, cardiomyocytes from CypD KO mice exhibited significantly less mPTP opening than cardiomyocytes from WT mice (p<0.05). Consistent with these results, FCCP caused significant increases in CaW rate in WT cardiomyocytes (p<0.05) but not in CypD KO cardiomyocytes. Furthermore, the incidence of Ca2+ alternans after treatment with FCCP and programmed stimulation was significantly higher in WT cardiomyocytes (11 of 13), than in WT cardiomyocytes treated with CsA (2 of 8; p<0.05) or CypD KO cardiomyocytes (2 of 10; p<0.01). (Pseudo-)Lead II ECGs were recorded from ex vivo hearts. We observed ST-T-wave alternans (a precursor of lethal arrhythmias) in 5 of 7 WT hearts. ST-T-wave alternans was not seen in CypD KO hearts (n=5) and in only 1 of 6 WT hearts treated with CsA. Consistent with these results, WT hearts exhibited a significantly higher average arrhythmia score than CypD KO (p<0.01) hearts subjected to FCCP treatment or chemical ischemia-reperfusion (p<0.01). In conclusion, CypD deficiency- induced mPTP inhibition attenuates CaWs and Ca2+ alternans during mitochondrial depolarization, and thereby protects against arrhythmogenesis in the heart.


Subject(s)
Arrhythmias, Cardiac/metabolism , Cyclophilins/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Animals , Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone/pharmacology , Peptidyl-Prolyl Isomerase F , Cyclophilins/deficiency , Dose-Response Relationship, Drug , Membrane Potential, Mitochondrial/drug effects , Mice , Mice, Knockout , Mitochondrial Membrane Transport Proteins/drug effects , Mitochondrial Permeability Transition Pore , Myocytes, Cardiac/drug effects , Structure-Activity Relationship
14.
PLoS One ; 10(2): e0115822, 2015.
Article in English | MEDLINE | ID: mdl-25671318

ABSTRACT

The functional importance of threonine 5 (T5) in modulating the activity of sarcolipin (SLN), a key regulator of sarco/endoplasmic reticulum (SR) Ca2+ ATPase (SERCA) pump was studied using a transgenic mouse model with cardiac specific expression of threonine 5 to alanine mutant SLN (SLNT5A). In these transgenic mice, the SLNT5A protein replaces the endogenous SLN in atria, while maintaining the total SLN content. The cardiac specific expression of SLNT5A results in severe cardiac structural remodeling accompanied by bi-atrial enlargement. Biochemical analyses reveal a selective downregulation of SR Ca2+ handling proteins and a reduced SR Ca2+ uptake both in atria and in the ventricles. Optical mapping analysis shows slower action potential propagation in the transgenic mice atria. Doppler echocardiography and hemodynamic measurements demonstrate a reduced atrial contractility and an impaired diastolic function. Together, these findings suggest that threonine 5 plays an important role in modulating SLN function in the heart. Furthermore, our studies suggest that alteration in SLN function can cause abnormal Ca2+ handling and subsequent cardiac remodeling and dysfunction.


Subject(s)
Muscle Proteins/genetics , Mutation , Myocardium/metabolism , Myocardium/pathology , Proteolipids/genetics , Threonine/genetics , Ventricular Dysfunction/genetics , Ventricular Remodeling/genetics , Animals , Calcium/metabolism , Diastole/genetics , Gene Expression , Heart Atria/metabolism , Hemodynamics , Mice , Mice, Transgenic , Muscle Proteins/metabolism , Organ Specificity/genetics , Proteolipids/metabolism , Sarcoplasmic Reticulum/metabolism , Threonine/metabolism
15.
Am J Physiol Heart Circ Physiol ; 308(3): H240-9, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25485900

ABSTRACT

Inhibition of ß-adrenergic receptor (ß-AR) signaling is one of the most common therapeutic approaches for patients with arrhythmias. Adenylyl cyclase (AC) is the key enzyme responsible for transducing ß-AR stimulation to increases in cAMP. The two major AC isoforms in the heart are types 5 and 6. Therefore, it is surprising that prior studies on overexpression of AC5 and AC6 in transgenic (Tg) mice have not examined mediation of arrhythmogenesis. Our goal was to examine the proarrhythmic substrate in AC5Tg hearts. Intracellular calcium ion (Ca(2+) i) was imaged in fluo-4 AM-loaded ventricular myocytes. The sarcoplasmic reticulum (SR) Ca(2+) content, fractional Ca(2+) release, and twitch Ca(2+) transient were significantly higher in the AC5Tg vs. wild-type (WT) myocytes, indicating Ca(2+) overload in AC5Tg myocytes. Action potential (AP) duration was significantly longer in AC5Tg than in WT myocytes. Additionally, AC5Tg myocytes developed spontaneous Ca(2+) waves in a larger fraction compared with WT myocytes, particularly when cells were exposed to isoproterenol. The Ca(2+) waves further induced afterdepolarizations and triggered APs. AC5Tg hearts had increased level of SERCA2a, oxidized Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), and phosphorylation of ryanodine receptors (RyR) at the CaMKII site, especially after isoproterenol treatment. This was consistent with higher reactive oxygen species production in AC5Tg myocytes after isoproterenol treatment. Isoproterenol induced more severe arrhythmias in AC5Tg than in WT mice. We conclude that AC5 overexpression promotes arrhythmogenesis, by inducing SR Ca(2+) overload and hyperactivation of RyR (phosphorylation by CaMKII), which in turn induces spontaneous Ca(2+) waves and afterdepolarizations.


Subject(s)
Adenylyl Cyclases/metabolism , Arrhythmias, Cardiac/metabolism , Action Potentials , Adenylyl Cyclases/genetics , Animals , Calcium/metabolism , Calcium Signaling , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cardiotonic Agents/pharmacology , Cells, Cultured , Heart Ventricles/cytology , Heart Ventricles/metabolism , Isoenzymes/genetics , Isoenzymes/metabolism , Isoproterenol/pharmacology , Mice , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/physiology , Reactive Oxygen Species/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
16.
PLoS One ; 8(11): e80574, 2013.
Article in English | MEDLINE | ID: mdl-24348912

ABSTRACT

Recent studies have suggested that mitochondria may play important roles in the Ca(2+) homeostasis of cardiac myocytes. However, it is still unclear if mitochondrial Ca(2+) flux can regulate the generation of Ca(2+) waves (CaWs) and triggered activities in cardiac myocytes. In the present study, intracellular/cytosolic Ca(2+) (Cai (2+)) was imaged in Fluo-4-AM loaded mouse ventricular myocytes. Spontaneous sarcoplasmic reticulum (SR) Ca(2+) release and CaWs were induced in the presence of high (4 mM) external Ca(2+) (Cao (2+)). The protonophore carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP) reversibly raised basal Cai (2+) levels even after depletion of SR Ca(2+) in the absence of Cao (2+) , suggesting Ca(2+) release from mitochondria. FCCP at 0.01 - 0.1 µM partially depolarized the mitochondrial membrane potential (Δψ m ) and increased the frequency and amplitude of CaWs in a dose-dependent manner. Simultaneous recording of cell membrane potentials showed the augmentation of delayed afterdepolarization amplitudes and frequencies, and induction of triggered action potentials. The effect of FCCP on CaWs was mimicked by antimycin A (an electron transport chain inhibitor disrupting Δψ m ) or Ru360 (a mitochondrial Ca(2+) uniporter inhibitor), but not by oligomycin (an ATP synthase inhibitor) or iodoacetic acid (a glycolytic inhibitor), excluding the contribution of intracellular ATP levels. The effects of FCCP on CaWs were counteracted by the mitochondrial permeability transition pore blocker cyclosporine A, or the mitochondrial Ca(2+) uniporter activator kaempferol. Our results suggest that mitochondrial Ca(2+) release and uptake exquisitely control the local Ca(2+) level in the micro-domain near SR ryanodine receptors and play an important role in regulation of intracellular CaWs and arrhythmogenesis.


Subject(s)
Calcium/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Animals , Antimycin A/pharmacology , Calcium Signaling/drug effects , Cells, Cultured , Kaempferols/pharmacology , Membrane Potential, Mitochondrial/drug effects , Mice , Oligomycins/pharmacology
17.
Biol Pharm Bull ; 36(2): 238-44, 2013.
Article in English | MEDLINE | ID: mdl-23196428

ABSTRACT

3,4,5-Trimethoxycinnamic acid (TMCA), methyl 3,4,5-trimethoxycinnamate (M-TMCA) and p-methoxycinnamic acid (PMCA) have been identified as the major bioactive components in the serum collected from rats treated with oral administration of Polygalae Radix ("YuanZhi," the roots of Polygala tenuifolia WILLD.), a traditional Chinese medicine used to relieve insomnia, anxiety and heart palpitation. The present study was designed to investigate its direct electrophysiological effects on isolated ventricular myocytes from rabbits. Whole-cell configuration of the patch-clamp technique was used to measure action potential (AP) and membrane currents in single ventricular myocytes enzymatically isolated from adult rabbit hearts. Ca(2+) transients were recorded in myocytes loaded with the Ca(2+) indicator Fluo-4AM. Among three bioactive substances of Polygala metabolites, only M-TMCA (15-30 µM) significantly shortened action potential duration at 50% and 90% repolarization (APD(50) and APD(90)) in cardiomyocytes in a concentration-dependent and a reversible manner. M-TMCA also inhibited L-type calcium current (I(Ca,L)), but showed effect on neither transient outward potassium current (I(to)) nor steady-state potassium current (I(K,SS)). Furthermore, M-TMCA abolished isoprenaline plus BayK8644-induced early afterdepolarizations (EADs) and suppressed delayed afterdepolarizations (DADs) and triggered activities (TAs). This potential anti-arrhythmic effects were likely attributed by the inhibition of I(Ca,L) and the suppression of intracellular Ca(2+) transients, which consequently suppress the generation of transient inward current (I(ti)). These findings suggest that M-TMCA may protect the heart from arrhythmias via its inhibitory effect on calcium channel.


Subject(s)
Anti-Arrhythmia Agents/pharmacology , Cinnamates/pharmacology , Myocytes, Cardiac/drug effects , Polygala , Animals , Drugs, Chinese Herbal/pharmacology , Male , Myocytes, Cardiac/physiology , Plant Roots , Rabbits
18.
Front Physiol ; 3: 252, 2012.
Article in English | MEDLINE | ID: mdl-22934009

ABSTRACT

Accumulating evidence has suggested that ω3-polyunsaturated fatty acids (ω3-PUFAs) may have beneficial effects in the prevention/treatment of cardiovascular diseases, while controversies still remain regarding their anti-arrhythmic potential. It is not clear yet whether ω-3-PUFAs can suppress early afterdepolarizations (EADs) induced by oxidative stress. In the present study, we recorded action potentials using the patch-clamp technique in ventricular myocytes isolated from rabbit hearts. The treatment of myocytes with H(2)O(2) (200 µM) prolonged AP durations and induced EADs, which were significantly suppressed by docosahexaenoic acid (DHA, 10 or 25 µM; n = 8). To reveal the ionic mechanisms, we examined the effects of DHA on L-type calcium currents (I(Ca.L)), late sodium (I(Na)), and transient outward potassium currents (I(to)) in ventricular myocytes pretreated with H(2)O(2). H(2)O(2) (200 µM) increased I(Ca.L) by 46.4% from control (-8.4 ± 1.4 pA/pF) to a peak level (-12.3 ± 1.8 pA/pF, n = 6, p < 0.01) after 6 min of H(2)O(2) perfusion. H(2)O(2)-enhanced I(Ca.L) was significantly reduced by DHA (25 µM; -7.1 ± 0.9 pA/pF, n = 6, p < 0.01). Similarly, H(2)O(2)-increased the late I(Na) (-3.2 ± 0.3 pC) from control level (-0.7 ± 0.1 pC). DHA (25 µM) completely reversed the H(2)O(2)-induced increase in late I(Na) (to -0.8 ± 0.2 pC, n = 5). H(2)O(2) also increased the peak amplitude of and the steady state I(to) from 8.9 ± 1.0 and 2.16 ± 0.25 pA/pF to 12.8 ± 1.21 and 3.13 ± 0.47 pA/pF respectively (n = 6, p < 0.01, however, treatment with DHA (25 µM) did not produce significant effects on current amplitudes and dynamics of I(to) altered by H(2)O(2). In addition, DHA (25 µM) did not affect the increase of intracellular reactive oxygen species (ROS) levels induced by H(2)O(2) in rabbit ventricular myocytes. These findings demonstrate that DHA suppresses exogenous H(2)O(2)-induced EADs mainly by modulating membrane ion channel functions, while its direct effect on ROS may play a less prominent role.

19.
Cardiovasc Res ; 95(3): 308-16, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22660482

ABSTRACT

AIMS: The transient outward potassium current (I(to)) plays important roles in action potential (AP) morphology and dynamics; however, its role in the genesis of early afterdepolarizations (EADs) is not well understood. We aimed to study the effects and mechanisms of I(to) on EAD genesis in cardiac cells using combined experimental and computational approaches. METHODS AND RESULTS: We first carried out patch-clamp experiments in isolated rabbit ventricular myocytes exposed to H(2)O(2) (0.2 or 1 mM), in which EADs were induced at a slow pacing rate. EADs were eliminated by either increasing the pacing rate or blocking I(to) with 2 mM 4-aminopyridine. In addition to enhancing the L-type calcium current (I(Ca,L)) and the late sodium current, H(2)O(2) also increased the conductance, slowed inactivation, and accelerated recovery from the inactivation of I(to). Computer simulations showed that I(to) promoted EADs under the condition of reduced repolarization reserve, consistent with the experimental observations. However, EADs were only promoted in the intermediate ranges of the I(to) conductance and the inactivation time constant. The underlying mechanism is that I(to) lowers the AP plateau voltage into the range at which the time-dependent potassium current (namely I(Ks)) activation is further slowed and I(Ca,L) is available for reactivation, leading to voltage oscillations to manifest EADs. Further experimental studies in cardiac cells of other species validated the theoretical predictions. CONCLUSION: In cardiac cells, I(to), with a proper conductance and inactivation speed, potentiates EADs by setting the AP plateau into the voltage range where I(Ca,L) reactivation is facilitated and I(Ks) activation is slowed.


Subject(s)
Action Potentials , Arrhythmias, Cardiac/etiology , Myocytes, Cardiac/metabolism , Potassium Channels/metabolism , Potassium/metabolism , 4-Aminopyridine/pharmacology , Animals , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/physiopathology , Calcium/metabolism , Calcium Channels, L-Type/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cardiac Pacing, Artificial , Computer Simulation , Dogs , Female , Hydrogen Peroxide/pharmacology , Kinetics , Male , Mice , Models, Cardiovascular , Myocytes, Cardiac/drug effects , Patch-Clamp Techniques , Potassium Channel Blockers/pharmacology , Potassium Channels/drug effects , Rabbits , Rats , Rats, Wistar , Sodium/metabolism
20.
Am J Physiol Heart Circ Physiol ; 302(8): H1636-44, 2012 Apr 15.
Article in English | MEDLINE | ID: mdl-22307670

ABSTRACT

Early afterdepolarizations (EADs) have been implicated in severe cardiac arrhythmias and sudden cardiac deaths. However, the mechanism(s) for EAD genesis, especially regarding the relative contribution of Ca(2+) wave (CaW) vs. L-type Ca current (I(Ca,L)), still remains controversial. In the present study, we simultaneously recorded action potentials (APs) and intracellular Ca(2+) images in isolated rabbit ventricular myocytes and systematically compared the properties of EADs in the following two pharmacological models: 1) hydrogen peroxide (H(2)O(2); 200 µM); and 2) isoproterenol (100 nM) and BayK 8644 (50 nM) (Iso + BayK). We assessed the rate dependency of EADs, the temporal relationship between EADs and corresponding CaWs, the distribution of EADs over voltage, and the effects of blockers of I(Ca,L), Na/Ca exchangers, and ryanodine receptors. The most convincing evidence came from the AP-clamp experiment, in which the cell membrane clamp was switched from current clamp to voltage clamp using a normal AP waveform without EAD; CaWs disappeared in the H(2)O(2) model, but persisted in the Iso + BayK model. We postulate that, although CaWs and reactivation of I(Ca,L) may act synergistically in either case, reactivation of I(Ca,L) plays a predominant role in EAD genesis under oxidative stress (H(2)O(2) model), while spontaneous CaWs are a predominant cause for EADs under Ca(2+) overload condition (Iso + BayK model).


Subject(s)
Calcium Channels/physiology , Calcium Signaling/physiology , Myocytes, Cardiac/physiology , Action Potentials/drug effects , Adrenergic beta-Agonists/pharmacology , Aniline Compounds/pharmacology , Animals , Calcium Channel Agonists/pharmacology , Calcium Channel Blockers/pharmacology , Electrophysiological Phenomena/physiology , Heart Ventricles , Homeodomain Proteins , Hydrogen Peroxide/pharmacology , In Vitro Techniques , Isoproterenol/pharmacology , Kinetics , Patch-Clamp Techniques , Phenyl Ethers/pharmacology , Rabbits , Ryanodine/pharmacology , Ryanodine Receptor Calcium Release Channel/drug effects , Sarcoplasmic Reticulum/drug effects , Sarcoplasmic Reticulum/physiology , Sodium-Calcium Exchanger/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...