Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Cell ; 53(2): 229-239.e7, 2020 04 20.
Article in English | MEDLINE | ID: mdl-32197069

ABSTRACT

Natural killer (NK) cells are a critical component of the innate immune system. However, their ontogenic origin has remained unclear. Here, we report that NK cell potential first arises from Hoxaneg/low Kit+CD41+CD16/32+ hematopoietic-stem-cell (HSC)-independent erythro-myeloid progenitors (EMPs) present in the murine yolk sac. EMP-derived NK cells and primary fetal NK cells, unlike their adult counterparts, exhibit robust degranulation in response to stimulation. Parallel studies using human pluripotent stem cells (hPSCs) revealed that HOXAneg/low CD34+ progenitors give rise to NK cells that, similar to murine EMP-derived NK cells, harbor a potent cytotoxic degranulation bias. In contrast, hPSC-derived HOXA+ CD34+ progenitors, as well as human cord blood CD34+ cells, give rise to NK cells that exhibit an attenuated degranulation response but robustly produce inflammatory cytokines. Collectively, our studies identify an extra-embryonic origin of potently cytotoxic NK cells, suggesting that ontogenic origin is a relevant factor in designing hPSC-derived adoptive immunotherapies.


Subject(s)
Cell Differentiation , Cell Lineage , Embryonic Stem Cells/cytology , Erythroid Precursor Cells/cytology , Hematopoietic Stem Cells/cytology , Killer Cells, Natural/pathology , Myeloid Progenitor Cells/cytology , Animals , Embryonic Stem Cells/metabolism , Erythroid Precursor Cells/metabolism , Female , Hematopoiesis , Hematopoietic Stem Cells/metabolism , Humans , Killer Cells, Natural/metabolism , Male , Mice , Myeloid Progenitor Cells/metabolism , Yolk Sac
2.
Stem Cells ; 34(2): 431-44, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26418893

ABSTRACT

Adult-repopulating hematopoietic stem cells (HSCs) emerge in low numbers in the midgestation mouse embryo from a subset of arterial endothelium, through an endothelial-to-hematopoietic transition. HSC-producing arterial hemogenic endothelium relies on the establishment of embryonic blood flow and arterial identity, and requires ß-catenin signaling. Specified prior to and during the formation of these initial HSCs are thousands of yolk sac-derived erythro-myeloid progenitors (EMPs). EMPs ensure embryonic survival prior to the establishment of a permanent hematopoietic system, and provide subsets of long-lived tissue macrophages. While an endothelial origin for these HSC-independent definitive progenitors is also accepted, the spatial location and temporal output of yolk sac hemogenic endothelium over developmental time remain undefined. We performed a spatiotemporal analysis of EMP emergence, and document the morphological steps of the endothelial-to-hematopoietic transition. Emergence of rounded EMPs from polygonal clusters of Kit(+) cells initiates prior to the establishment of arborized arterial and venous vasculature in the yolk sac. Interestingly, Kit(+) polygonal clusters are detected in both arterial and venous vessels after remodeling. To determine whether there are similar mechanisms regulating the specification of EMPs with other angiogenic signals regulating adult-repopulating HSCs, we investigated the role of embryonic blood flow and Wnt/ß-catenin signaling during EMP emergence. In embryos lacking a functional circulation, rounded Kit(+) EMPs still fully emerge from unremodeled yolk sac vasculature. In contrast, canonical Wnt signaling appears to be a common mechanism regulating hematopoietic emergence from hemogenic endothelium. These data illustrate the heterogeneity in hematopoietic output and spatiotemporal regulation of primary embryonic hemogenic endothelium.


Subject(s)
Endothelium, Vascular/metabolism , Hematopoiesis, Extramedullary/physiology , Hematopoietic Stem Cells/metabolism , Wnt Proteins/metabolism , Yolk Sac/metabolism , Animals , Endothelium, Vascular/cytology , Hematopoietic Stem Cells/cytology , Mice , Mice, Transgenic , Yolk Sac/blood supply , Yolk Sac/cytology
3.
Stem Cell Reports ; 4(6): 995-1003, 2015 Jun 09.
Article in English | MEDLINE | ID: mdl-26028528

ABSTRACT

Red blood cells (RBCs), responsible for oxygen delivery and carbon dioxide exchange, are essential for our well-being. Alternative RBC sources are needed to meet the increased demand for RBC transfusions projected to occur as our population ages. We previously have discovered that erythroblasts derived from the early mouse embryo can self-renew extensively ex vivo for many months. To better understand the mechanisms regulating extensive erythroid self-renewal, global gene expression data sets from self-renewing and differentiating erythroblasts were analyzed and revealed the differential expression of Bmi-1. Bmi-1 overexpression conferred extensive self-renewal capacity upon adult bone-marrow-derived self-renewing erythroblasts, which normally have limited proliferative potential. Importantly, Bmi-1 transduction did not interfere with the ability of extensively self-renewing erythroblasts (ESREs) to terminally mature either in vitro or in vivo. Bmi-1-induced ESREs can serve to generate in vitro models of erythroid-intrinsic disorders and ultimately may serve as a source of cultured RBCs for transfusion therapy.


Subject(s)
Erythroblasts/cytology , Polycomb Repressive Complex 1/metabolism , Proto-Oncogene Proteins/metabolism , Animals , Cell Proliferation/drug effects , Dexamethasone/pharmacology , Erythroblasts/metabolism , Erythroblasts/transplantation , Erythropoietin/pharmacology , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Mice, Transgenic , Polycomb Repressive Complex 1/antagonists & inhibitors , Polycomb Repressive Complex 1/genetics , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/genetics , RNA Interference , RNA, Small Interfering/metabolism , Stem Cell Factor/pharmacology , Whole-Body Irradiation
4.
Cell Rep ; 11(12): 1892-904, 2015 Jun 30.
Article in English | MEDLINE | ID: mdl-26095363

ABSTRACT

Hematopoietic potential arises in mammalian embryos before adult-repopulating hematopoietic stem cells (HSCs). At embryonic day 9.5 (E9.5), we show the first murine definitive erythro-myeloid progenitors (EMPs) have an immunophenotype distinct from primitive hematopoietic progenitors, maturing megakaryocytes and macrophages, and rare B cell potential. EMPs emerge in the yolk sac with erythroid and broad myeloid, but not lymphoid, potential. EMPs migrate to the fetal liver and rapidly differentiate, including production of circulating neutrophils by E11.5. Although the surface markers, transcription factors, and lineage potential associated with EMPs overlap with those found in adult definitive hematopoiesis, they are present in unique combinations or proportions that result in a specialized definitive embryonic progenitor. Furthermore, we find that embryonic stem cell (ESC)-derived hematopoiesis recapitulates early yolk sac hematopoiesis, including primitive, EMP, and rare B cell potential. EMPs do not have long-term potential when transplanted in immunocompromised adults, but they can provide transient adult-like RBC reconstitution.


Subject(s)
Embryonic Development/genetics , Embryonic Stem Cells , Hematopoiesis , Hematopoietic Stem Cells , Animals , Blood Cells/cytology , Cell Lineage , Embryo, Mammalian , Gene Expression Regulation, Developmental , Mice , Yolk Sac/cytology , Yolk Sac/growth & development
5.
Blood ; 124(2): 277-86, 2014 Jul 10.
Article in English | MEDLINE | ID: mdl-24735964

ABSTRACT

Megakaryocyte (MK) development in the bone marrow progresses spatially from the endosteal niche, which promotes MK progenitor proliferation, to the sinusoidal vascular niche, the site of terminal maturation and thrombopoiesis. The chemokine stromal cell-derived factor-1 (SDF-1), signaling through CXCR4, is implicated in the maturational chemotaxis of MKs toward sinusoidal vessels. Here, we demonstrate that both IV administration of SDF-1 and stabilization of endogenous SDF-1 acutely increase MK-vasculature association and thrombopoiesis with no change in MK number. In the setting of radiation injury, we find dynamic fluctuations in marrow SDF-1 distribution that spatially and temporally correlate with variations in MK niche occupancy. Stabilization of altered SDF-1 gradients directly affects MK location. Importantly, these SDF-1-mediated changes have functional consequences for platelet production, as the movement of MKs away from the vasculature decreases circulating platelets, while MK association with the vasculature increases circulating platelets. Finally, we demonstrate that manipulation of SDF-1 gradients can improve radiation-induced thrombocytopenia in a manner additive with earlier TPO treatment. Taken together, our data support the concept that SDF-1 regulates the spatial distribution of MKs in the marrow and consequently circulating platelet numbers. This knowledge of the microenvironmental regulation of the MK lineage could lead to improved therapeutic strategies for thrombocytopenia.


Subject(s)
Cell Movement , Chemokine CXCL12/physiology , Megakaryocytes/cytology , Megakaryocytes/physiology , Radiation Injuries, Experimental , Stem Cell Niche/genetics , Thrombopoiesis/genetics , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/drug effects , Bone Marrow Cells/physiology , Bone Marrow Cells/radiation effects , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Differentiation/radiation effects , Cell Movement/drug effects , Cell Movement/genetics , Cell Movement/radiation effects , Cells, Cultured , Chemokine CXCL12/administration & dosage , Female , Megakaryocyte Progenitor Cells/cytology , Megakaryocyte Progenitor Cells/drug effects , Megakaryocyte Progenitor Cells/physiology , Megakaryocyte Progenitor Cells/radiation effects , Megakaryocytes/drug effects , Megakaryocytes/radiation effects , Mice , Mice, Inbred C57BL , Radiation Injuries, Experimental/genetics , Radiation Injuries, Experimental/pathology , Receptors, CXCR4/administration & dosage , Receptors, CXCR4/metabolism , Stem Cell Niche/drug effects , Stem Cell Niche/radiation effects , Thrombopoiesis/drug effects , Thrombopoiesis/radiation effects
6.
Cell Metab ; 17(3): 343-52, 2013 Mar 05.
Article in English | MEDLINE | ID: mdl-23416069

ABSTRACT

Sorting of endocytic ligands and receptors is critical for diverse cellular processes. The physiological significance of endosomal sorting proteins in vertebrates, however, remains largely unknown. Here we report that sorting nexin 3 (Snx3) facilitates the recycling of transferrin receptor (Tfrc) and thus is required for the proper delivery of iron to erythroid progenitors. Snx3 is highly expressed in vertebrate hematopoietic tissues. Silencing of Snx3 results in anemia and hemoglobin defects in vertebrates due to impaired transferrin (Tf)-mediated iron uptake and its accumulation in early endosomes. This impaired iron assimilation can be complemented with non-Tf iron chelates. We show that Snx3 and Vps35, a component of the retromer, interact with Tfrc to sort it to the recycling endosomes. Our findings uncover a role of Snx3 in regulating Tfrc recycling, iron homeostasis, and erythropoiesis. Thus, the identification of Snx3 provides a genetic tool for exploring erythropoiesis and disorders of iron metabolism.


Subject(s)
Anemia/genetics , Iron/metabolism , Receptors, Transferrin/metabolism , Sorting Nexins/metabolism , Analysis of Variance , Animals , Blotting, Western , Cells, Cultured , Fluorescein-5-isothiocyanate , Fluorescent Antibody Technique , Gene Silencing , Mice , Sorting Nexins/genetics , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...