Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biomacromolecules ; 23(11): 4562-4573, 2022 11 14.
Article in English | MEDLINE | ID: mdl-36224101

ABSTRACT

Polyurethane polymers are found in a wide range of material applications. However, the toxic nature of isocyanates used in their formulation is a major concern; hence, more environmentally friendly alternatives are of high interest in the search for new sustainable polymer materials. In this work, we present the preparation of isocyanate-free polyurethane/epoxy hybrid thermosets with a high biobased content (85-90 wt %). The isocyanate-free polyurethanes were based on polyhydroxyurethanes (PHUs) prepared from depolymerized native lignin, which we refer to as lignin hydrogenolysis oil (LHO). The LHO was functionalized with epichlorohydrin to yield the epoxidized structure (LHO-GE), which was in turn reacted with CO2 to form the cyclocarbonated species (LHO-CC). Blends of the LHO-CC and glycerol diglycidyl ether (GDGE) were cured to produce hybrid PHU/epoxy (LHO-CC/GDGE) thermosets. Thermosetting materials with flexural moduli of 4.5 GPa and flexural strengths of 160 MPa were produced by optimizing the mass ratio of the two main components and the triamine hardener. These novel biobased hybrid materials outperformed the corresponding epoxy-only thermosets and comparable hybrid PHU/epoxy materials produced from petrochemicals.


Subject(s)
Lignin , Polyurethanes , Polyurethanes/chemistry , Lignin/chemistry , Epoxy Resins/chemistry , Polymers/chemistry , Isocyanates/chemistry
2.
Biomacromolecules ; 21(4): 1548-1559, 2020 04 13.
Article in English | MEDLINE | ID: mdl-32186381

ABSTRACT

Producing the next generation of thermoset polymers from renewable sources is an important sustainability goal. Hydrogenolysis of pinewood lignin was scaled up for the first time from lab scale to a 50 L pilot-scale reactor, producing a range of depolymerized lignin oils under different conditions. These lignin hydrogenolysis oils were glycidylated, blended with bisphenol A diglycidyl ether, and cured to give epoxy thermoset polymers. The thermal and mechanical properties of the epoxy polymers were assessed by differential scanning calorimetry, thermogravimetric analysis, flexural testing, and dynamic mechanical thermal analysis. Replacing up to 67% of the bisphenol A epoxy with the lignin oil epoxies resulted in cured epoxy polymers with improvements of up to 25% in flexural stiffness and strength. Considerable scope exists in simplifying and scaling up the hydrogenolysis process to produce depolymerized lignins that can substitute established petrochemicals in the quest for renewable high-performance thermoset polymers.


Subject(s)
Lignin , Polymers , Epoxy Resins
3.
ACS Macro Lett ; 9(8): 1155-1160, 2020 Aug 18.
Article in English | MEDLINE | ID: mdl-35653206

ABSTRACT

Biobased epoxy thermoset polymers were prepared from lignin hydrogenolysis oils produced from native hardwood lignin. Native lignin in Eucalyptus nitens and Eucalyptus saligna wood was reacted in situ under Pd-catalyzed mild hydrogenolysis conditions to give depolymerized lignin oils in yields up to 98 wt %. Reacting these lignin oils with epichlorohydrin produced biobased epoxy resins. Blending these resins with nonrenewable bisphenol A diglycidyl ether (BADGE) in different proportions, and curing with diethylenetriamine, produced a series of epoxy thermoset polymers with varying biobased content. Up to 67% of the BADGE could be replaced with hardwood lignin-derived epoxy resins while achieving superior or equivalent mechanical properties to the BADGE control polymer. Comparing the performance of lignin-based epoxy polymers from eucalyptus and pine wood provided insights into the advantages and disadvantages of using hardwood versus softwood native lignins in the quest for high performance biobased thermoset polymers.

4.
Top Curr Chem (Cham) ; 376(4): 32, 2018 Jul 10.
Article in English | MEDLINE | ID: mdl-29992468

ABSTRACT

Lignin is the most abundant source of renewable ready-made aromatic chemicals for making sustainable polymers. However, the structural heterogeneity, high polydispersity, limited chemical functionality and solubility of most technical lignins makes them challenging to use in developing new bio-based polymers. Recently, greater focus has been given to developing polymers from low molecular weight lignin-based building blocks such as lignin monomers or lignin-derived bio-oils that can be obtained by chemical depolymerization of lignins. Lignin monomers or bio-oils have additional hydroxyl functionality, are more homogeneous and can lead to higher levels of lignin substitution for non-renewables in polymer formulations. These potential polymer feed stocks, however, present their own challenges in terms of production (i.e., yields and separation), pre-polymerization reactions and processability. This review provides an overview of recent developments on polymeric materials produced from lignin-based model compounds and depolymerized lignin bio-oils with a focus on thermosetting materials. Particular emphasis is given to epoxy resins, polyurethanes and phenol-formaldehyde resins as this is where the research shows the greatest overlap between the model compounds and bio-oils. The common goal of the research is the development of new economically viable strategies for using lignin as a replacement for petroleum-derived chemicals in aromatic-based polymers.


Subject(s)
Lignin/chemistry , Temperature , Epoxy Resins/chemistry , Formaldehyde/chemistry , Lignin/chemical synthesis , Models, Molecular , Phenol/chemistry , Polymerization
5.
ChemSusChem ; 8(6): 980-4, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25706036

ABSTRACT

The reductive depolymerization of a variety of polymeric materials based on polyethers, polyesters, and polycarbonates is described using hydrosilanes as reductants and metal-free catalysts. This strategy enables the selective depolymerization of waste polymers as well as bio-based polyesters to functional chemicals such as alcohols and phenols at room temperature. Commercially available B(C6 F5)3 and [Ph3 C(+),B(C6 F5)4(-)] catalysts are active hydrosilylation catalysts in this procedure and they are compatible with the use of inexpensive and air-stable polymethylhydrosiloxane and tetramethyldisiloxane as reductants. A significant advantage of this recycling method is derived from its tolerance to the additives present in waste plastics and its ability to selectively depolymerize mixtures of polymers.


Subject(s)
Ethers/chemistry , Polycarboxylate Cement/chemistry , Polyesters/chemistry , Polymerization , Temperature , Catalysis
6.
Chem Commun (Camb) ; 50(7): 862-5, 2014 Jan 25.
Article in English | MEDLINE | ID: mdl-24296648

ABSTRACT

The first metal-free reduction of lignin model compounds is described. Using inexpensive Et3SiH, PMHS and TMDS hydrosilanes as reductants, α-O-4 and ß-O-4 linkages are reduced to primary alcohols and phenols under mild conditions using B(C6F5)3 as an efficient catalyst.

SELECTION OF CITATIONS
SEARCH DETAIL
...