Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 651: 36-46, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37540928

ABSTRACT

Cysteine, as a non-aromatic precursor, was used to produce Nitrogen (N) and Sulfur (S) sources for preparing N, S-doped carbon dots (CDs) with tunable luminescence emission. Despite the tremendous investigations, the photoluminescence (PL) mechanism of CDs is still unclear due to its complex core-shell structure, variety of surface functional groups, and structure dependency. This study focuses on controlling aromatization and graphitization processes during the hydrothermal synthesis on CDs by using Citric Acid (CA) and Ammonium persulfate. Detailed characterizations by FTIR spectroscopy, XPS, and HR-TEM are provided to suggest both chemical and bandgap structures. Results reveal that the red-shift of PL occurred due to the graphitization and increasing content of graphitic nitrogen in the core, as well as the Pyridinic and Amine groups creating sub-bands on the surface. These findings resolve the controversy on the PL mechanism of Cysteine-based CDs and provide a general guide for increasing the aromatization and graphitization degree from non-aromatic precursors which clarify the mechanism exploration and structural analysis of other types of CDs.

SELECTION OF CITATIONS
SEARCH DETAIL
...