Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 43(25): 4598-4611, 2023 06 21.
Article in English | MEDLINE | ID: mdl-37221096

ABSTRACT

Neurons exhibit a striking degree of functional diversity, each one tuned to the needs of the circuitry in which it is embedded. A fundamental functional dichotomy occurs in activity patterns, with some neurons firing at a relatively constant "tonic" rate, while others fire in bursts, a "phasic" pattern. Synapses formed by tonic versus phasic neurons are also functionally differentiated, yet the bases of their distinctive properties remain enigmatic. A major challenge toward illuminating the synaptic differences between tonic and phasic neurons is the difficulty in isolating their physiological properties. At the Drosophila neuromuscular junction, most muscle fibers are coinnervated by two motor neurons: the tonic "MN-Ib" and phasic "MN-Is." Here, we used selective expression of a newly developed botulinum neurotoxin transgene to silence tonic or phasic motor neurons in Drosophila larvae of either sex. This approach highlighted major differences in their neurotransmitter release properties, including probability, short-term plasticity, and vesicle pools. Furthermore, Ca2+ imaging demonstrated ∼2-fold greater Ca2+ influx at phasic neuron release sites relative to tonic, along with an enhanced synaptic vesicle coupling. Finally, confocal and super-resolution imaging revealed that phasic neuron release sites are organized in a more compact arrangement, with enhanced stoichiometry of voltage-gated Ca2+ channels relative to other active zone scaffolds. These data suggest that distinctions in active zone nano-architecture and Ca2+ influx collaborate to differentially tune glutamate release at tonic versus phasic synaptic subtypes.SIGNIFICANCE STATEMENT "Tonic" and "phasic" neuronal subtypes, based on differential firing properties, are common across many nervous systems. Using a recently developed approach to selectively silence transmission from one of these two neurons, we reveal specialized synaptic functional and structural properties that distinguish these specialized neurons. This study provides important insights into how input-specific synaptic diversity is achieved, which could have implications for neurologic disorders that involve changes in synaptic function.


Subject(s)
Neuromuscular Junction , Synapses , Animals , Synapses/physiology , Neuromuscular Junction/metabolism , Synaptic Vesicles/metabolism , Motor Neurons/physiology , Drosophila
2.
Biophys J ; 120(24): 5575-5591, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34774503

ABSTRACT

At chemical synapses, synaptic vesicles release their acidic contents into the cleft, leading to the expectation that the cleft should acidify. However, fluorescent pH probes targeted to the cleft of conventional glutamatergic synapses in both fruit flies and mice reveal cleft alkalinization rather than acidification. Here, using a reaction-diffusion scheme, we modeled pH dynamics at the Drosophila neuromuscular junction as glutamate, ATP, and protons (H+) were released into the cleft. The model incorporates bicarbonate and phosphate buffering systems as well as plasma membrane calcium-ATPase activity and predicts substantial cleft acidification but only for fractions of a millisecond after neurotransmitter release. Thereafter, the cleft rapidly alkalinizes and remains alkaline for over 100 ms because the plasma membrane calcium-ATPase removes H+ from the cleft in exchange for calcium ions from adjacent pre- and postsynaptic compartments, thus recapitulating the empirical data. The extent of synaptic vesicle loading and time course of exocytosis have little influence on the magnitude of acidification. Phosphate but not bicarbonate buffering is effective at suppressing the magnitude and time course of the acid spike, whereas both buffering systems are effective at suppressing cleft alkalinization. The small volume of the cleft levies a powerful influence on the magnitude of alkalinization and its time course. Structural features that open the cleft to adjacent spaces appear to be essential for alleviating the extent of pH transients accompanying neurotransmission.


Subject(s)
Synapses , Synaptic Vesicles , Animals , Computer Simulation , Glutamic Acid/metabolism , Mice , Synapses/metabolism , Synaptic Transmission , Synaptic Vesicles/metabolism
3.
J Neurosci ; 40(8): 1611-1624, 2020 02 19.
Article in English | MEDLINE | ID: mdl-31964719

ABSTRACT

The dogma that the synaptic cleft acidifies during neurotransmission is based on the corelease of neurotransmitters and protons from synaptic vesicles, and is supported by direct data from sensory ribbon-type synapses. However, it is unclear whether acidification occurs at non-ribbon-type synapses. Here we used genetically encoded fluorescent pH indicators to examine cleft pH at conventional neuronal synapses. At the neuromuscular junction of female Drosophila larvae, we observed alkaline spikes of over 1 log unit during fictive locomotion in vivo. Ex vivo, single action potentials evoked alkalinizing pH transients of only ∼0.01 log unit, but these transients summated rapidly during burst firing. A chemical pH indicator targeted to the cleft corroborated these findings. Cleft pH transients were dependent on Ca2+ movement across the postsynaptic membrane, rather than neurotransmitter release per se, a result consistent with cleft alkalinization being driven by the Ca2+/H+ antiporting activity of the plasma membrane Ca2+-ATPase at the postsynaptic membrane. Targeting the pH indicators to the microenvironment of the presynaptic voltage gated Ca2+ channels revealed that alkalinization also occurred within the cleft proper at the active zone and not just within extrasynaptic regions. Application of the pH indicators at the mouse calyx of Held, a mammalian central synapse, similarly revealed cleft alkalinization during burst firing in both males and females. These findings, made at two quite different non-ribbon type synapses, suggest that cleft alkalinization during neurotransmission, rather than acidification, is a generalizable phenomenon across conventional neuronal synapses.SIGNIFICANCE STATEMENT Neurotransmission is highly sensitive to the pH of the extracellular milieu. This is readily evident in the neurological symptoms that accompany systemic acid/base imbalances. Imaging data from sensory ribbon-type synapses show that neurotransmission itself can acidify the synaptic cleft, likely due to the corelease of protons and glutamate. It is not clear whether the same phenomenon occurs at conventional neuronal synapses due to the difficulties in collecting such data. If it does occur, it would provide for an additional layer of activity-dependent modulation of neurotransmission. Our findings of alkalinization, rather than acidification, within the cleft of two different neuronal synapses encourages a reassessment of the scope of activity-dependent pH influences on neurotransmission and short-term synaptic plasticity.


Subject(s)
Glutamic Acid/metabolism , Neuromuscular Junction/metabolism , Neurons/metabolism , Synaptic Transmission/physiology , Animals , Drosophila , Female , Hydrogen-Ion Concentration , Neuronal Plasticity/physiology , Synaptic Vesicles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...