Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 38(27): 6114-6129, 2018 07 04.
Article in English | MEDLINE | ID: mdl-29875264

ABSTRACT

The ability to adapt behavior to environmental fluctuations is critical for survival of organisms ranging from invertebrates to mammals. Caenorhabditis elegans can learn to avoid sodium chloride when it is paired with starvation. This behavior may help animals avoid areas without food. Although some genes have been implicated in this salt-aversive learning behavior, critical genetic components, and the neural circuit in which they act, remain elusive. Here, we show that the sole worm ortholog of mammalian CaMKI/IV, CMK-1, is essential for salt-aversive learning behavior in C. elegans hermaphrodites. We find that CMK-1 acts in the primary salt-sensing ASE neurons to regulate this behavior. By characterizing the intracellular calcium dynamics in ASE neurons using microfluidics, we find that loss of cmk-1 has subtle effects on sensory-evoked calcium responses in ASE axons and their modulation by salt conditioning. Our study implicates the expression of the conserved CaMKI/CMK-1 in chemosensory neurons as a regulator of behavioral plasticity to environmental salt in C. elegansSIGNIFICANCE STATEMENT Like other animals, the nematode Caenorhabditis elegans depends on salt for survival and navigates toward high concentrations of this essential mineral. In addition to its role as an essential nutrient, salt also causes osmotic stress at high concentrations. A growing body of evidence indicates that C. elegans balances the requirement for salt with the danger it presents through a process called salt-aversive learning. We show that this behavior depends on expression of a calcium/calmodulin-dependent kinase, CMK-1, in the ASE salt-sensing neurons. Our study identifies CMK-1 and salt-sensitive chemosensory neurons as key factors in this form of behavioral plasticity.


Subject(s)
Behavior, Animal/physiology , Caenorhabditis elegans Proteins/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Chemoreceptor Cells/metabolism , Chemotaxis/physiology , Learning/physiology , Animals , Animals, Genetically Modified , Caenorhabditis elegans
2.
J Vis Exp ; (132)2018 02 19.
Article in English | MEDLINE | ID: mdl-29553526

ABSTRACT

One central goal of mechanobiology is to understand the reciprocal effect of mechanical stress on proteins and cells. Despite its importance, the influence of mechanical stress on cellular function is still poorly understood. In part, this knowledge gap exists because few tools enable simultaneous deformation of tissue and cells, imaging of cellular activity in live animals, and efficient restriction of motility in otherwise highly mobile model organisms, such as the nematode Caenorhabditis elegans. The small size of C. elegans makes them an excellent match to microfluidics-based research devices, and solutions for immobilization have been presented using microfluidic devices. Although these devices allow for high-resolution imaging, the animal is fully encased in polydimethylsiloxane (PDMS) and glass, limiting physical access for delivery of mechanical force or electrophysiological recordings. Recently, we created a device that integrates pneumatic actuators with a trapping design that is compatible with high-resolution fluorescence microscopy. The actuation channel is separated from the worm-trapping channel by a thin PDMS diaphragm. This diaphragm is deflected into the side of a worm by applying pressure from an external source. The device can target individual mechanosensitive neurons. The activation of these neurons is imaged at high-resolution with genetically-encoded calcium indicators. This article presents the general method using C. elegans strains expressing calcium-sensitive activity indicator (GCaMP6s) in their touch receptor neurons (TRNs). The method, however, is not limited to TRNs nor to calcium sensors as a probe, but can be expanded to other mechanically-sensitive cells or sensors.


Subject(s)
Caenorhabditis elegans/pathogenicity , Lab-On-A-Chip Devices/statistics & numerical data , Microscopy, Fluorescence/methods , Animals
3.
Lab Chip ; 17(6): 1116-1127, 2017 03 14.
Article in English | MEDLINE | ID: mdl-28207921

ABSTRACT

New tools for applying force to animals, tissues, and cells are critically needed in order to advance the field of mechanobiology, as few existing tools enable simultaneous imaging of tissue and cell deformation as well as cellular activity in live animals. Here, we introduce a novel microfluidic device that enables high-resolution optical imaging of cellular deformations and activity while applying precise mechanical stimuli to the surface of the worm's cuticle with a pneumatic pressure reservoir. To evaluate device performance, we compared analytical and numerical simulations conducted during the design process to empirical measurements made with fabricated devices. Leveraging the well-characterized touch receptor neurons (TRNs) with an optogenetic calcium indicator as a model mechanoreceptor neuron, we established that individual neurons can be stimulated and that the device can effectively deliver steps as well as more complex stimulus patterns. This microfluidic device is therefore a valuable platform for investigating the mechanobiology of living animals and their mechanosensitive neurons.


Subject(s)
Lab-On-A-Chip Devices , Mechanoreceptors , Microfluidic Analytical Techniques , Animals , Animals, Genetically Modified , Caenorhabditis elegans , Calcium/metabolism , Equipment Design , Mechanoreceptors/chemistry , Mechanoreceptors/cytology , Mechanoreceptors/physiology , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Optical Imaging , Optogenetics , Physical Stimulation/instrumentation , Physical Stimulation/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...