Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Ind Microbiol Biotechnol ; 50(1)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36564025

ABSTRACT

Yield improvements in cell factories can potentially be obtained by fine-tuning the regulatory mechanisms for gene candidates. In pursuit of such candidates, we performed RNA-sequencing of two α-amylase producing Bacillus strains and predict hundreds of putative novel non-coding transcribed regions. Surprisingly, we found among hundreds of non-coding and structured RNA candidates that non-coding genomic regions are proportionally undergoing the highest changes in expression during fermentation. Since these classes of RNA are also understudied, we targeted the corresponding genomic regions with CRIPSRi knockdown to test for any potential impact on the yield. From differentially expression analysis, we selected 53 non-coding candidates. Although CRISPRi knockdowns target both the sense and the antisense strand, the CRISPRi experiment cannot link causes for yield changes to the sense or antisense disruption. Nevertheless, we observed on several instances with strong changes in enzyme yield. The knockdown targeting the genomic region for a putative antisense RNA of the 3' UTR of the skfA-skfH operon led to a 21% increase in yield. In contrast, the knockdown targeting the genomic regions of putative antisense RNAs of the cytochrome c oxidase subunit 1 (ctaD), the sigma factor sigH, and the uncharacterized gene yhfT decreased yields by 31 to 43%.


Subject(s)
Bacillus subtilis , alpha-Amylases , alpha-Amylases/biosynthesis , alpha-Amylases/genetics , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , RNA/genetics , Sequence Analysis, RNA
2.
Microb Cell Fact ; 21(1): 131, 2022 Jul 02.
Article in English | MEDLINE | ID: mdl-35780132

ABSTRACT

BACKGROUND: Bacillus subtilis is a Gram-positive bacterium used as a cell factory for protein production. Over the last decades, the continued optimization of production strains has increased yields of enzymes, such as amylases, and made commercial applications feasible. However, current yields are still significantly lower than the theoretically possible yield based on the available carbon sources. In its natural environment, B. subtilis can respond to unfavorable growth conditions by differentiating into motile cells that use flagella to swim towards available nutrients. RESULTS: In this study, we analyze existing transcriptome data from a B. subtilis α-amylase production strain at different time points during a 5-day fermentation. We observe that genes of the fla/che operon, essential for flagella assembly and motility, are differentially expressed over time. To investigate whether expression of the flagella operon affects yield, we performed CRISPR-dCas9 based knockdown of the fla/che operon with sgRNA target against the genes flgE, fliR, and flhG, respectively. The knockdown resulted in inhibition of mobility and a striking 2-threefold increase in α-amylase production yield. Moreover, replacing flgE (required for flagella hook assembly) with an erythromycin resistance gene followed by a transcription terminator increased α-amylase yield by about 30%. Transcript levels of the α-amylase were unaltered in the CRISPR-dCas9 knockdowns as well as the flgE deletion strain, but all manipulations disrupted the ability of cells to swim on agar. CONCLUSIONS: We demonstrate that the disruption of flagella in a B. subtilis α-amylase production strain, either by CRISPR-dCas9-based knockdown of the operon or by replacing flgE with an erythromycin resistance gene followed by a transcription terminator, increases the production of α-amylase in small-scale fermentation.


Subject(s)
Amylases , Bacillus subtilis , Flagella , alpha-Amylases , Amylases/genetics , Bacillus subtilis/genetics , Erythromycin , Flagella/genetics , alpha-Amylases/genetics , alpha-Amylases/metabolism
3.
Biotechniques ; 67(3): 110-116, 2019 09.
Article in English | MEDLINE | ID: mdl-31208218

ABSTRACT

RNA sequencing library construction using single-stranded ligation of a DNA adapter to 3' ends of cDNAs often produces primer-adapter byproducts, which compete with cDNA-adapter ligation products during library amplification and, therefore, reduces the number of informative sequencing reads. We find that Escherichia coli Exo I digestion efficiently and selectively removes surplus reverse transcription primer and thereby reduces the primer-adapter product contamination in 3' cDNA ligation-based sequencing libraries, including small RNA libraries, which are typically similar in size to the primer-adapter products. We further demonstrate that Exo I treatment does not lead to trimming of the cDNA 3' end when duplexed with the RNA template. Exo I digestion is easy to perform and implement in other protocols and could facilitate a more widespread use of 3' cDNA ligation for sequencing-based applications.


Subject(s)
Escherichia coli/genetics , Gene Library , RNA, Bacterial/genetics , Sequence Analysis, RNA/methods , DNA Primers/genetics , DNA Primers/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Exodeoxyribonucleases/metabolism , Polymerase Chain Reaction/methods , RNA, Bacterial/isolation & purification
4.
RNA Biol ; 15(4-5): 586-593, 2018.
Article in English | MEDLINE | ID: mdl-29023189

ABSTRACT

Production of the translation apparatus of E. coli is carefully matched to the demand for protein synthesis posed by a given growth condition. For example, the fraction of RNA polymerases that transcribe rRNA and tRNA drops from 80% during rapid growth to 24% within minutes of a sudden amino acid starvation. We recently reported in Nucleic Acids Research that the tRNA pool is more dynamically regulated than previously thought. In addition to the regulation at the level of synthesis, we found that tRNAs are subject to demand-based regulation at the level of their degradation. In this point-of-view article we address the question of why this phenomenon has not previously been described. We also present data that expands on the mechanism of tRNA degradation, and we discuss the possible implications of tRNA instability for the ability of E. coli to cope with stresses that affect the translation process.


Subject(s)
Amino Acids/deficiency , Escherichia coli/genetics , Protein Biosynthesis , RNA, Transfer/genetics , Stress, Physiological/genetics , Endoribonucleases/genetics , Endoribonucleases/metabolism , Escherichia coli/metabolism , Polyadenylation , Polynucleotide Adenylyltransferase/genetics , Polynucleotide Adenylyltransferase/metabolism , RNA Stability , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Transfer/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...