Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Diagnostics (Basel) ; 12(6)2022 Jun 06.
Article in English | MEDLINE | ID: mdl-35741208

ABSTRACT

As COVID-19 transmission control measures are gradually being lifted, a sensitive and rapid diagnostic method for large-scale screening could prove essential for monitoring population infection rates. However, many rapid workflows for SARS-CoV-2 detection and diagnosis are not amenable to the analysis of large-volume samples. Previously, our group demonstrated a technique for SARS-CoV-2 nanoparticle-facilitated enrichment and enzymatic lysis from clinical samples in under 10 min. Here, this sample preparation strategy was applied to pooled samples originating from nasopharyngeal (NP) swabs eluted in viral transport medium (VTM) and saliva samples diluted up to 1:100. This preparation method was coupled with conventional RT-PCR on gold-standard instrumentation for proof-of-concept. Additionally, real-time PCR analysis was conducted using an in-house, ultra-rapid real-time microfluidic instrument paired with an experimentally optimized rapid protocol. Following pooling and extraction from clinical samples, average cycle threshold (CT) values from resultant eluates generally increased as the pooling dilution factor increased; further, results from a double-blind study demonstrated 100% concordance with clinical values. In addition, preliminary data obtained from amplification of eluates prepared by this technique and analyzed using our portable, ultra-rapid real-time microfluidic PCR amplification instrument showed progress toward a streamlined method for rapid SARS-CoV-2 analysis from pooled samples.

2.
Methods ; 187: 13-27, 2021 03.
Article in English | MEDLINE | ID: mdl-32755621

ABSTRACT

Cytosine methylation is one of the best studied epigenetic modifications. In mammals, DNA methylation patterns vary among cells and is mainly found in the CpG context. DNA methylation is involved in important processes during development and differentiation and its dysregulation can lead to or is associated with diseases, such as cancer, loss-of-imprinting syndromes and neurological disorders. It has been also shown that DNA methylation at the cellular, tissue and organism level varies with age. To overcome the costs of Whole-Genome Bisulfite Sequencing, the gold standard method to detect 5-methylcytosines at a single base resolution, DNA methylation arrays have been developed and extensively used. This method allows one to assess the status of a fraction of the CpG sites present in the genome of an organism. In order to combine the relatively low cost of Methylation Arrays and digital signals of bisulfite sequencing, we developed a Targeted Bisulfite Sequencing method that can be applied to biomarker discovery for virtually any phenotype. Here we describe a comprehensive step-by-step protocol to build a DNA methylation-based epigenetic clock.


Subject(s)
DNA Methylation , Epigenomics/methods , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , 5-Methylcytosine/analysis , 5-Methylcytosine/chemistry , 5-Methylcytosine/metabolism , Age Factors , Aging/genetics , Biomarkers/analysis , Epigenesis, Genetic , Humans , Models, Genetic , Sulfites/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...